ElasticHash: Semantic Image Similarity Search by Deep Hashing with
Elasticsearch
- URL: http://arxiv.org/abs/2305.04710v1
- Date: Mon, 8 May 2023 13:50:47 GMT
- Title: ElasticHash: Semantic Image Similarity Search by Deep Hashing with
Elasticsearch
- Authors: Nikolaus Korfhage, Markus M\"uhling, Bernd Freisleben
- Abstract summary: ElasticHash is a novel approach for high-quality, efficient, and large-scale semantic image similarity search.
It is based on a deep hashing model to learn hash codes for fine-grained image similarity search in natural images.
- Score: 0.9167082845109439
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present ElasticHash, a novel approach for high-quality, efficient, and
large-scale semantic image similarity search. It is based on a deep hashing
model to learn hash codes for fine-grained image similarity search in natural
images and a two-stage method for efficiently searching binary hash codes using
Elasticsearch (ES). In the first stage, a coarse search based on short hash
codes is performed using multi-index hashing and ES terms lookup of neighboring
hash codes. In the second stage, the list of results is re-ranked by computing
the Hamming distance on long hash codes. We evaluate the retrieval performance
of \textit{ElasticHash} for more than 120,000 query images on about 6.9 million
database images of the OpenImages data set. The results show that our approach
achieves high-quality retrieval results and low search latencies.
Related papers
- Unified Functional Hashing in Automatic Machine Learning [58.77232199682271]
We show that large efficiency gains can be obtained by employing a fast unified functional hash.
Our hash is "functional" in that it identifies equivalent candidates even if they were represented or coded differently.
We show dramatic improvements on multiple AutoML domains, including neural architecture search and algorithm discovery.
arXiv Detail & Related papers (2023-02-10T18:50:37Z) - A Lower Bound of Hash Codes' Performance [122.88252443695492]
In this paper, we prove that inter-class distinctiveness and intra-class compactness among hash codes determine the lower bound of hash codes' performance.
We then propose a surrogate model to fully exploit the above objective by estimating the posterior of hash codes and controlling it, which results in a low-bias optimization.
By testing on a series of hash-models, we obtain performance improvements among all of them, with an up to $26.5%$ increase in mean Average Precision and an up to $20.5%$ increase in accuracy.
arXiv Detail & Related papers (2022-10-12T03:30:56Z) - Asymmetric Hash Code Learning for Remote Sensing Image Retrieval [22.91678927865952]
We propose a novel deep hashing method, named asymmetric hash code learning (AHCL), for remote sensing image retrieval.
The AHCL generates the hash codes of query and database images in an asymmetric way.
The experimental results on three public datasets demonstrate that the proposed method outperforms symmetric methods in terms of retrieval accuracy and efficiency.
arXiv Detail & Related papers (2022-01-15T07:00:38Z) - PHPQ: Pyramid Hybrid Pooling Quantization for Efficient Fine-Grained
Image Retrieval [68.05570413133462]
We propose a Pyramid Hybrid Pooling Quantization (PHPQ) module to capture and preserve fine-grained semantic information from multi-level features.
Experiments on two widely-used public benchmarks, CUB-200-2011 and Stanford Dogs, demonstrate that PHPQ outperforms state-of-the-art methods.
arXiv Detail & Related papers (2021-09-11T07:21:02Z) - Unsupervised Multi-Index Semantic Hashing [23.169142004594434]
We propose an unsupervised hashing model that learns hash codes that are both effective and highly efficient by being optimized for multi-index hashing.
We experimentally compare MISH to state-of-the-art semantic hashing baselines in the task of document similarity search.
We find that even though multi-index hashing also improves the efficiency of the baselines compared to a linear scan, they are still upwards of 33% slower than MISH.
arXiv Detail & Related papers (2021-03-26T13:33:48Z) - Deep Reinforcement Learning with Label Embedding Reward for Supervised
Image Hashing [85.84690941656528]
We introduce a novel decision-making approach for deep supervised hashing.
We learn a deep Q-network with a novel label embedding reward defined by Bose-Chaudhuri-Hocquenghem codes.
Our approach outperforms state-of-the-art supervised hashing methods under various code lengths.
arXiv Detail & Related papers (2020-08-10T09:17:20Z) - Multiple Code Hashing for Efficient Image Retrieval [16.750400008178293]
We propose a novel hashing framework, called multiple code hashing (MCH) to improve the performance of hash bucket search.
MCH is to learn multiple hash codes for each image, with each code representing a different region of the image.
To the best of our knowledge, this is the first work that proposes to learn multiple hash codes for each image in image retrieval.
arXiv Detail & Related papers (2020-08-04T13:18:19Z) - Dual-level Semantic Transfer Deep Hashing for Efficient Social Image
Retrieval [35.78137004253608]
Social network stores and disseminates a tremendous amount of user shared images.
Deep hashing is an efficient indexing technique to support large-scale social image retrieval.
Existing methods suffer from severe semantic shortage when optimizing a large amount of deep neural network parameters.
We propose a Dual-level Semantic Transfer Deep Hashing (DSTDH) method to alleviate this problem.
arXiv Detail & Related papers (2020-06-10T01:03:09Z) - Reinforcing Short-Length Hashing [61.75883795807109]
Existing methods have poor performance in retrieval using an extremely short-length hash code.
In this study, we propose a novel reinforcing short-length hashing (RSLH)
In this proposed RSLH, mutual reconstruction between the hash representation and semantic labels is performed to preserve the semantic information.
Experiments on three large-scale image benchmarks demonstrate the superior performance of RSLH under various short-length hashing scenarios.
arXiv Detail & Related papers (2020-04-24T02:23:52Z) - A Survey on Deep Hashing Methods [52.326472103233854]
Nearest neighbor search aims to obtain the samples in the database with the smallest distances from them to the queries.
With the development of deep learning, deep hashing methods show more advantages than traditional methods.
Deep supervised hashing is categorized into pairwise methods, ranking-based methods, pointwise methods and quantization.
Deep unsupervised hashing is categorized into similarity reconstruction-based methods, pseudo-label-based methods and prediction-free self-supervised learning-based methods.
arXiv Detail & Related papers (2020-03-04T08:25:15Z) - Image Hashing by Minimizing Discrete Component-wise Wasserstein Distance [12.968141477410597]
Adversarial autoencoders are shown to be able to implicitly learn a robust, locality-preserving hash function that generates balanced and high-quality hash codes.
The existing adversarial hashing methods are inefficient to be employed for large-scale image retrieval applications.
We propose a new adversarial-autoencoder hashing approach that has a much lower sample requirement and computational cost.
arXiv Detail & Related papers (2020-02-29T00:22:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.