Communication-Robust Multi-Agent Learning by Adaptable Auxiliary
Multi-Agent Adversary Generation
- URL: http://arxiv.org/abs/2305.05116v1
- Date: Tue, 9 May 2023 01:29:46 GMT
- Title: Communication-Robust Multi-Agent Learning by Adaptable Auxiliary
Multi-Agent Adversary Generation
- Authors: Lei Yuan, Feng Chen, Zhongzhang Zhang, Yang Yu
- Abstract summary: Communication can promote coordination in cooperative Multi-Agent Reinforcement Learning (MARL)
We propose an adaptable method of Multi-Agent Auxiliary Adversaries Generation for robust Communication, dubbed MA3C, to obtain a robust communication-based policy.
- Score: 8.376257490773192
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Communication can promote coordination in cooperative Multi-Agent
Reinforcement Learning (MARL). Nowadays, existing works mainly focus on
improving the communication efficiency of agents, neglecting that real-world
communication is much more challenging as there may exist noise or potential
attackers. Thus the robustness of the communication-based policies becomes an
emergent and severe issue that needs more exploration. In this paper, we posit
that the ego system trained with auxiliary adversaries may handle this
limitation and propose an adaptable method of Multi-Agent Auxiliary Adversaries
Generation for robust Communication, dubbed MA3C, to obtain a robust
communication-based policy. In specific, we introduce a novel message-attacking
approach that models the learning of the auxiliary attacker as a cooperative
problem under a shared goal to minimize the coordination ability of the ego
system, with which every information channel may suffer from distinct message
attacks. Furthermore, as naive adversarial training may impede the
generalization ability of the ego system, we design an attacker population
generation approach based on evolutionary learning. Finally, the ego system is
paired with an attacker population and then alternatively trained against the
continuously evolving attackers to improve its robustness, meaning that both
the ego system and the attackers are adaptable. Extensive experiments on
multiple benchmarks indicate that our proposed MA3C provides comparable or
better robustness and generalization ability than other baselines.
Related papers
- Will 6G be Semantic Communications? Opportunities and Challenges from
Task Oriented and Secure Communications to Integrated Sensing [49.83882366499547]
This paper explores opportunities and challenges of task (goal)-oriented and semantic communications for next-generation (NextG) networks through the integration of multi-task learning.
We employ deep neural networks representing a dedicated encoder at the transmitter and multiple task-specific decoders at the receiver.
We scrutinize potential vulnerabilities stemming from adversarial attacks during both training and testing phases.
arXiv Detail & Related papers (2024-01-03T04:01:20Z) - ProAgent: Building Proactive Cooperative Agents with Large Language
Models [89.53040828210945]
ProAgent is a novel framework that harnesses large language models to create proactive agents.
ProAgent can analyze the present state, and infer the intentions of teammates from observations.
ProAgent exhibits a high degree of modularity and interpretability, making it easily integrated into various coordination scenarios.
arXiv Detail & Related papers (2023-08-22T10:36:56Z) - Robust multi-agent coordination via evolutionary generation of auxiliary
adversarial attackers [23.15190337027283]
We propose Robust Multi-Agent Coordination via Generation of Auxiliary Adversarial Attackers (ROMANCE)
ROMANCE enables the trained policy to encounter diversified and strong auxiliary adversarial attacks during training, thus achieving high robustness under various policy perturbations.
The goal of quality is to minimize the ego-system coordination effect, and a novel diversity regularizer is applied to diversify the behaviors among attackers.
arXiv Detail & Related papers (2023-05-10T05:29:47Z) - Decentralized Adversarial Training over Graphs [55.28669771020857]
The vulnerability of machine learning models to adversarial attacks has been attracting considerable attention in recent years.
This work studies adversarial training over graphs, where individual agents are subjected to varied strength perturbation space.
arXiv Detail & Related papers (2023-03-23T15:05:16Z) - Certifiably Robust Policy Learning against Adversarial Communication in
Multi-agent Systems [51.6210785955659]
Communication is important in many multi-agent reinforcement learning (MARL) problems for agents to share information and make good decisions.
However, when deploying trained communicative agents in a real-world application where noise and potential attackers exist, the safety of communication-based policies becomes a severe issue that is underexplored.
In this work, we consider an environment with $N$ agents, where the attacker may arbitrarily change the communication from any $CfracN-12$ agents to a victim agent.
arXiv Detail & Related papers (2022-06-21T07:32:18Z) - Coordinating Policies Among Multiple Agents via an Intelligent
Communication Channel [81.39444892747512]
In Multi-Agent Reinforcement Learning (MARL), specialized channels are often introduced that allow agents to communicate directly with one another.
We propose an alternative approach whereby agents communicate through an intelligent facilitator that learns to sift through and interpret signals provided by all agents to improve the agents' collective performance.
arXiv Detail & Related papers (2022-05-21T14:11:33Z) - Multiagent Deep Reinforcement Learning: Challenges and Directions
Towards Human-Like Approaches [0.0]
We present the most common multiagent problem representations and their main challenges.
We identify five research areas that address one or more of these challenges.
We suggest that, for multiagent reinforcement learning to be successful, future research addresses these challenges with an interdisciplinary approach.
arXiv Detail & Related papers (2021-06-29T19:53:15Z) - Adversarial Attacks On Multi-Agent Communication [80.4392160849506]
Modern autonomous systems will soon be deployed at scale, opening up the possibility for cooperative multi-agent systems.
Such advantages rely heavily on communication channels which have been shown to be vulnerable to security breaches.
In this paper, we explore such adversarial attacks in a novel multi-agent setting where agents communicate by sharing learned intermediate representations.
arXiv Detail & Related papers (2021-01-17T00:35:26Z) - The Emergence of Adversarial Communication in Multi-Agent Reinforcement
Learning [6.18778092044887]
Many real-world problems require the coordination of multiple autonomous agents.
Recent work has shown the promise of Graph Neural Networks (GNNs) to learn explicit communication strategies that enable complex multi-agent coordination.
We show how a single self-interested agent is capable of learning highly manipulative communication strategies that allows it to significantly outperform a cooperative team of agents.
arXiv Detail & Related papers (2020-08-06T12:48:08Z) - Learning Individually Inferred Communication for Multi-Agent Cooperation [37.56115000150748]
We propose Individually Inferred Communication (I2C) to enable agents to learn a prior for agent-agent communication.
The prior knowledge is learned via causal inference and realized by a feed-forward neural network.
I2C can not only reduce communication overhead but also improve the performance in a variety of multi-agent cooperative scenarios.
arXiv Detail & Related papers (2020-06-11T14:07:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.