Effective Medical Code Prediction via Label Internal Alignment
- URL: http://arxiv.org/abs/2305.05162v1
- Date: Tue, 9 May 2023 04:14:20 GMT
- Title: Effective Medical Code Prediction via Label Internal Alignment
- Authors: Guodong Liu
- Abstract summary: We propose a multi-view attention based Neural network to predict medical codes from clinical texts.
Our method is verified to be effective on the open source dataset.
- Score: 2.538209532048867
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The clinical notes are usually typed into the system by physicians. They are
typically required to be marked by standard medical codes, and each code
represents a diagnosis or medical treatment procedure. Annotating these notes
is time consuming and prone to error. In this paper, we proposed a multi-view
attention based Neural network to predict medical codes from clinical texts.
Our method incorporates three aspects of information, the semantic context of
the clinical text, the relationship among the label (medical codes) space, and
the alignment between each pair of a clinical text and medical code. Our method
is verified to be effective on the open source dataset. The experimental result
shows that our method achieves better performance against the prior
state-of-art on multiple metrics.
Related papers
- Medical Codes Prediction from Clinical Notes: From Human Coders to
Machines [0.21320960069210473]
Prediction of medical codes from clinical notes is a practical and essential need for every healthcare delivery organization.
The biggest challenge is directly identifying appropriate medical codes from several thousands of high-dimensional codes from unstructured free-text clinical notes.
Recent studies have shown the state-of-the-art code prediction results of full-fledged deep learning-based methods.
arXiv Detail & Related papers (2022-10-30T14:24:13Z) - Cross-Lingual Knowledge Transfer for Clinical Phenotyping [55.92262310716537]
We investigate cross-lingual knowledge transfer strategies to execute this task for clinics that do not use the English language.
We evaluate these strategies for a Greek and a Spanish clinic leveraging clinical notes from different clinical domains.
Our results show that using multilingual data overall improves clinical phenotyping models and can compensate for data sparseness.
arXiv Detail & Related papers (2022-08-03T08:33:21Z) - User-Driven Research of Medical Note Generation Software [49.85146209418244]
We present three rounds of user studies carried out in the context of developing a medical note generation system.
We discuss the participating clinicians' impressions and views of how the system ought to be adapted to be of value to them.
We describe a three-week test run of the system in a live telehealth clinical practice.
arXiv Detail & Related papers (2022-05-05T10:18:06Z) - Towards more patient friendly clinical notes through language models and
ontologies [57.51898902864543]
We present a novel approach to automated medical text based on word simplification and language modelling.
We use a new dataset pairs of publicly available medical sentences and a version of them simplified by clinicians.
Our method based on a language model trained on medical forum data generates simpler sentences while preserving both grammar and the original meaning.
arXiv Detail & Related papers (2021-12-23T16:11:19Z) - Word-level Text Highlighting of Medical Texts forTelehealth Services [0.0]
This paper aims to show how different text highlighting techniques can capture relevant medical context.
Three different word-level text highlighting methodologies are implemented and evaluated.
The results of our experiments show that the neural network approach is successful in highlighting medically-relevant terms.
arXiv Detail & Related papers (2021-05-21T15:13:54Z) - Does the Magic of BERT Apply to Medical Code Assignment? A Quantitative
Study [2.871614744079523]
It is not clear if pretrained models are useful for medical code prediction without further architecture engineering.
We propose a hierarchical fine-tuning architecture to capture interactions between distant words and adopt label-wise attention to exploit label information.
Contrary to current trends, we demonstrate that a carefully trained classical CNN outperforms attention-based models on a MIMIC-III subset with frequent codes.
arXiv Detail & Related papers (2021-03-11T07:23:45Z) - A Meta-embedding-based Ensemble Approach for ICD Coding Prediction [64.42386426730695]
International Classification of Diseases (ICD) are the de facto codes used globally for clinical coding.
These codes enable healthcare providers to claim reimbursement and facilitate efficient storage and retrieval of diagnostic information.
Our proposed approach enhances the performance of neural models by effectively training word vectors using routine medical data as well as external knowledge from scientific articles.
arXiv Detail & Related papers (2021-02-26T17:49:58Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
Clinical diagnosis, which aims to assign diagnosis codes for a patient based on the clinical note, plays an essential role in clinical decision-making.
We propose a novel framework to combine the inheritance-guided hierarchical assignment and co-occurrence graph propagation for clinical automatic diagnosis.
arXiv Detail & Related papers (2021-01-27T13:16:51Z) - Medical Code Assignment with Gated Convolution and Note-Code Interaction [39.079615516043674]
We propose a novel method, gated convolutional neural networks, and a note-code interaction (GatedCNN-NCI) for automatic medical code assignment.
With a novel note-code interaction design and a graph message passing mechanism, we explicitly capture the underlying dependency between notes and codes.
Our proposed model outperforms state-of-the-art models in most cases, and our model size is on par with light-weighted baselines.
arXiv Detail & Related papers (2020-10-14T11:37:24Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
We propose a novel self-attention mechanism that captures the contextual dependency and temporal relationships within a patient's healthcare journey.
An end-to-end bidirectional temporal encoder network (BiteNet) then learns representations of the patient's journeys.
We have evaluated the effectiveness of our methods on two supervised prediction and two unsupervised clustering tasks with a real-world EHR dataset.
arXiv Detail & Related papers (2020-09-24T00:42:36Z) - Seeing The Whole Patient: Using Multi-Label Medical Text Classification
Techniques to Enhance Predictions of Medical Codes [2.158285012874102]
We present results of multi-label medical text classification problems with 18, 50 and 155 labels.
For imbalanced data we show that labels which occur infrequently, benefit the most from additional features incorporated in embeddings.
High dimensional embeddings from this research are made available for public use.
arXiv Detail & Related papers (2020-03-29T02:19:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.