論文の概要: Massively Parallel Tensor Network State Algorithms on Hybrid CPU-GPU
Based Architectures
- arxiv url: http://arxiv.org/abs/2305.05581v1
- Date: Tue, 9 May 2023 16:15:07 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-10 19:11:57.098319
- Title: Massively Parallel Tensor Network State Algorithms on Hybrid CPU-GPU
Based Architectures
- Title(参考訳): ハイブリッドCPU-GPUアーキテクチャによる大規模並列テンソルネットワーク状態アルゴリズム
- Authors: Andor Menczer and \"Ors Legeza
- Abstract要約: 本稿では,HPC インフラストラクチャ構築における TNS アルゴリズムの現在の限界を拡張するため,実装の詳細とともに,新しいアルゴリズムソリューションを提案する。
ヒルベルト空間次元上の問題に対処する選択された強い相関を持つ分子系のベンチマーク結果が2.88times1036$である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The interplay of quantum and classical simulation and the delicate divide
between them is in the focus of massively parallelized tensor network state
(TNS) algorithms designed for high performance computing (HPC). In this
contribution, we present novel algorithmic solutions together with
implementation details to extend current limits of TNS algorithms on HPC
infrastructure building on state-of-the-art hardware and software technologies.
Benchmark results obtained via large-scale density matrix renormalization group
(DMRG) simulations are presented for selected strongly correlated molecular
systems addressing problems on Hilbert space dimensions up to
$2.88\times10^{36}$.
- Abstract(参考訳): 量子シミュレーションと古典シミュレーションの相互作用とそれら間の微妙な分割は、高性能コンピューティング(hpc)用に設計された超並列テンソルネットワーク状態(tns)アルゴリズムの焦点である。
本稿では,最新のハードウェアとソフトウェア技術に基づくhpcインフラストラクチャ上のtnsアルゴリズムの現在の限界を拡張するための実装詳細とともに,新たなアルゴリズムソリューションを提案する。
ヒルベルト空間次元の問題を最大2.88\times10^{36}$で解くために, 大規模密度行列再正規化群 (DMRG) シミュレーションを用いて得られたベンチマーク結果を示す。
関連論文リスト
- Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
ニューロモルフィックコンピューティングでは、スパイクニューラルネットワーク(SNN)が推論タスクを実行し、シーケンシャルデータを含むワークロードの大幅な効率向上を提供する。
ハードウェアとソフトウェアの最近の進歩は、スパイクニューロン間で交換された各スパイクに数ビットのペイロードを埋め込むことにより、推論精度をさらに高めることを示した。
本稿では,マルチレベルSNNを用いた無線ニューロモルフィック分割計算アーキテクチャについて検討する。
論文 参考訳(メタデータ) (2024-11-07T14:08:35Z) - Simulator Demonstration of Large Scale Variational Quantum Algorithm on HPC Cluster [0.0]
本研究は,2つの新しい手法を用いて量子シミュレーションを高速化することを目的とする。
VQEシミュレーションの200倍の高速化を実現し,32kbitsの地中エネルギー計算を許容時間で実証した。
論文 参考訳(メタデータ) (2024-02-19T06:34:01Z) - State of practice: evaluating GPU performance of state vector and tensor
network methods [2.7930955543692817]
本稿では,8種類の量子サブルーチンを用いたテストベンチにおける現状シミュレーション手法の限界について検討する。
我々は,最大1桁のスピードアップを達成し,最適なシミュレーション戦略を選択する方法について強調する。
論文 参考訳(メタデータ) (2024-01-11T09:22:21Z) - Two dimensional quantum lattice models via mode optimized hybrid CPU-GPU density matrix renormalization group method [0.0]
2つの空間次元量子格子モデル上で量子多体問題をシミュレートするためのハイブリッド数値計算手法を提案する。
本研究では, 2次元スピンレスフェルミオンモデルと, トーラス幾何学上のハバードモデルについて, 計算時間における数桁の大きさを節約できることを実証する。
論文 参考訳(メタデータ) (2023-11-23T17:07:47Z) - Boosting the effective performance of massively parallel tensor network
state algorithms on hybrid CPU-GPU based architectures via non-Abelian
symmetries [0.0]
Wigner-Eckhart定理に基づく非アベリア対称性関連テンソル代数は、従来のテンソルネットワーク層から完全に分離されている。
我々は、計算複雑性の観点からarXiv:2305.05581で報告された結果に対し、桁違いの性能向上を達成した。
提案手法の有効性能は250-500TFLOPSと推定される。
論文 参考訳(メタデータ) (2023-09-23T07:49:53Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
単一画像超解像(SISR)問題を解くために,量子コンピューティングに基づくアルゴリズムを提案する。
提案したAQCアルゴリズムは、SISRの精度を維持しつつ、古典的なアナログよりも向上したスピードアップを実現する。
論文 参考訳(メタデータ) (2023-04-18T11:57:15Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
テンソルネットワーク(TN)アルゴリズムは、パラメタライズド量子回路(PQC)にマッピングできる
本稿では,現実的な量子回路を用いてTN状態を近似する新しいプロトコルを提案する。
その結果、量子回路の逐次的な成長と最適化を含む1つの特定のプロトコルが、他の全ての手法より優れていることが明らかとなった。
論文 参考訳(メタデータ) (2022-09-01T17:08:41Z) - Learning to Beamform in Heterogeneous Massive MIMO Networks [48.62625893368218]
大規模マルチインプット多重出力(MIMO)ネットワークにおいて最適なビームフォーマを見つけることはよく知られている問題である。
本稿では,この問題に対処するための新しい深層学習に基づく論文アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-11-08T12:48:06Z) - Fully-parallel Convolutional Neural Network Hardware [0.7829352305480285]
本稿では,ハードウェアにArticial Neural Networks(ANN)を実装するための,新しい電力・面積効率アーキテクチャを提案する。
LENET-5として完全に並列なCNNを1つのFPGAに埋め込んでテストするのが初めてである。
論文 参考訳(メタデータ) (2020-06-22T17:19:09Z) - Iterative Algorithm Induced Deep-Unfolding Neural Networks: Precoding
Design for Multiuser MIMO Systems [59.804810122136345]
本稿では,AIIDNN(ディープ・アンフォールディング・ニューラルネット)を一般化した,ディープ・アンフォールディングのためのフレームワークを提案する。
古典的重み付き最小二乗誤差(WMMSE)反復アルゴリズムの構造に基づく効率的なIAIDNNを提案する。
提案したIAIDNNは,計算複雑性を低減した反復WMMSEアルゴリズムの性能を効率よく向上することを示す。
論文 参考訳(メタデータ) (2020-06-15T02:57:57Z) - Minimal Filtering Algorithms for Convolutional Neural Networks [82.24592140096622]
我々は,M=3,5,7,9,11の基本的なフィルタリング操作を実装するための完全並列ハードウェア指向アルゴリズムを開発した。
各ケースにおける提案アルゴリズムの完全な並列ハードウェア実装は、組込み乗算器の数を約30%削減する。
論文 参考訳(メタデータ) (2020-04-12T13:18:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。