論文の概要: Enhancing the Performance of Transformer-based Spiking Neural Networks
by Improved Downsampling with Precise Gradient Backpropagation
- arxiv url: http://arxiv.org/abs/2305.05954v1
- Date: Wed, 10 May 2023 07:48:08 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-11 13:58:08.601258
- Title: Enhancing the Performance of Transformer-based Spiking Neural Networks
by Improved Downsampling with Precise Gradient Backpropagation
- Title(参考訳): 高精度バックプロパゲーションによるダウンサンプリングの改善によるトランスフォーマーベーススパイクニューラルネットワークの性能向上
- Authors: Chenlin Zhou, Han Zhang, Zhaokun Zhou, Liutao Yu, Zhengyu Ma, Huihui
Zhou, Xiaopeng Fan, Yonghong Tian
- Abstract要約: 最先端の深層SNN(SpikformerやSpikeformerなど)は、勾配のバックプロパゲーションに関連する重要な課題に悩まされている。
本稿では,CML(ConvBN-Maxing-LIF)を提案する。
- 参考スコア(独自算出の注目度): 27.49928942588982
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep spiking neural networks (SNNs) have drawn much attention in recent years
because of their low power consumption, biological rationality and event-driven
property. However, state-of-the-art deep SNNs (including Spikformer and
Spikingformer) suffer from a critical challenge related to the imprecise
gradient backpropagation. This problem arises from the improper design of
downsampling modules in these networks, and greatly hampering the overall model
performance. In this paper, we propose ConvBN-MaxPooling-LIF (CML), an improved
downsampling with precise gradient backpropagation. We prove that CML can
effectively overcome the imprecision of gradient backpropagation from a
theoretical perspective. In addition, we evaluate CML on ImageNet, CIFAR10,
CIFAR100, CIFAR10-DVS, DVS128-Gesture datasets, and show state-of-the-art
performance on all these datasets with significantly enhanced performances
compared with Spikingformer. For instance, our model achieves 77.64 $\%$ on
ImageNet, 96.04 $\%$ on CIFAR10, 81.4$\%$ on CIFAR10-DVS, with + 1.79$\%$ on
ImageNet, +1.54$\%$ on CIFAR100 compared with Spikingformer.
- Abstract(参考訳): 近年、低消費電力、生物学的合理性、事象駆動性などにより、ディープスパイクニューラルネットワーク(SNN)が注目されている。
しかし、現在最先端の深層SNN(SpikformerやSpikeformerなど)は、不正確な勾配のバックプロパゲーションに関連する重大な課題に悩まされている。
この問題は、これらのネットワークにおけるダウンサンプリングモジュールの不適切な設計から生じ、全体のモデル性能を著しく損なう。
本稿では,CML(ConvBN-MaxPooling-LIF)を提案する。
我々はCMLが理論的観点からの勾配逆伝播の精度を効果的に克服できることを証明した。
さらに、ImageNet, CIFAR10, CIFAR100, CIFAR10-DVS, DVS128-Gestureデータセット上でCMLを評価し、Spikeformerと比較して大幅に性能が向上したこれらのデータセットの最先端性能を示す。
例えば、私たちのモデルはImageNetで77.64$\%、CIFAR10で96.04$\%、CIFAR10-DVSで81.4$\%、ImageNetで+1.79$\%、CIFAR100で+1.54$\%である。
関連論文リスト
- Scaling Spike-driven Transformer with Efficient Spike Firing Approximation Training [17.193023656793464]
脳にインスパイアされたスパイキングニューラルネットワーク(SNN)の野望は、従来のニューラルネットワーク(ANN)に代わる低消費電力な代替手段になることである。
この作業は、SNNとANNのパフォーマンスギャップと、SNNの高トレーニングコストという、このビジョンを実現する上での2つの大きな課題に対処する。
本研究では,2次発火機構によるスパイクニューロンの固有の欠陥を同定し,整数学習とスパイク駆動推論を用いたスパイクフィリング近似(SFA)法を提案する。
論文 参考訳(メタデータ) (2024-11-25T03:05:41Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
水中画像強調(UIE)は、水中環境によって引き起こされる複雑な劣化のために難しい課題である。
従来の手法では、劣化過程を理想化し、中音や物体の動きが画像の特徴の分布に与える影響を無視することが多い。
提案手法では,予測画像を用いて疑似ラベルを動的に更新し,動的勾配を加えてネットワークの勾配空間を最適化する。
論文 参考訳(メタデータ) (2023-12-12T06:07:21Z) - SparseSpikformer: A Co-Design Framework for Token and Weight Pruning in
Spiking Transformer [12.717450255837178]
スパイキングニューラルネットワーク(SNN)は低消費電力と高エネルギー効率の利点がある。
最も先進的なSNNであるSpikformerは、Transformerの自己保持モジュールとSNNを組み合わせて、優れたパフォーマンスを実現している。
本稿では,SparseSpikformerについて紹介する。SparseSpikformerはトークンとウェイトプルーニング技術を用いてSparseSpikformerのスパーシ性を実現するための共同設計フレームワークである。
論文 参考訳(メタデータ) (2023-11-15T09:22:52Z) - Deep Multi-Threshold Spiking-UNet for Image Processing [51.88730892920031]
本稿では,SNN(Spike Neural Networks)とU-Netアーキテクチャを組み合わせた,画像処理のためのスパイキング-UNetの概念を紹介する。
効率的なスパイキング-UNetを実現するためには,スパイクによる高忠実度情報伝播の確保と,効果的なトレーニング戦略の策定という2つの課題に直面する。
実験の結果,画像のセグメンテーションとデノイングにおいて,スパイキングUNetは非スパイキングと同等の性能を発揮することがわかった。
論文 参考訳(メタデータ) (2023-07-20T16:00:19Z) - Spikingformer: Spike-driven Residual Learning for Transformer-based
Spiking Neural Network [19.932683405796126]
スパイキングニューラルネットワーク(SNN)は、人工ニューラルネットワークに代わる有望なエネルギー効率の代替手段を提供する。
SNNは、残余接続の構造によって引き起こされる非スパイク計算に悩まされる。
我々は、純粋なトランスをベースとしたスパイクニューラルネットワークであるSpkingformerを開発した。
論文 参考訳(メタデータ) (2023-04-24T09:44:24Z) - Reducing ANN-SNN Conversion Error through Residual Membrane Potential [19.85338979292052]
スパイキングニューラルネットワーク(SNN)は、低消費電力のユニークな特性とニューロモルフィックチップ上の高速コンピューティングにより、広く学術的な注目を集めている。
本稿では,不均一な誤差を詳細に解析し,それを4つのカテゴリに分割する。
本研究では,残膜電位に基づく最適化手法を提案する。
論文 参考訳(メタデータ) (2023-02-04T04:44:31Z) - Pushing the Efficiency Limit Using Structured Sparse Convolutions [82.31130122200578]
本稿では,画像の固有構造を利用して畳み込みフィルタのパラメータを削減する構造的スパース畳み込み(SSC)を提案する。
我々は、SSCが効率的なアーキテクチャにおける一般的なレイヤ(奥行き、グループ回り、ポイント回りの畳み込み)の一般化であることを示す。
SSCに基づくアーキテクチャは、CIFAR-10、CIFAR-100、Tiny-ImageNet、ImageNet分類ベンチマークのベースラインと比較して、最先端のパフォーマンスを実現している。
論文 参考訳(メタデータ) (2022-10-23T18:37:22Z) - Spikformer: When Spiking Neural Network Meets Transformer [102.91330530210037]
本稿では,スパイキングニューラルネットワーク(SNN)と自己認識機構という,生物学的にもっとも有効な2つの構造について考察する。
我々は、スパイキング・セルフ・アテンション(SSA)と、スパイキング・トランスフォーマー(Spikformer)という強力なフレームワークを提案する。
論文 参考訳(メタデータ) (2022-09-29T14:16:49Z) - SmoothNets: Optimizing CNN architecture design for differentially
private deep learning [69.10072367807095]
DPSGDは、サンプルごとの勾配の切り抜きとノイズ付けを必要とする。
これにより、非プライベートトレーニングと比較してモデルユーティリティが削減される。
SmoothNetと呼ばれる新しいモデルアーキテクチャを蒸留し,DP-SGDトレーニングの課題に対するロバスト性の向上を特徴とした。
論文 参考訳(メタデータ) (2022-05-09T07:51:54Z) - Toward Compact Deep Neural Networks via Energy-Aware Pruning [2.578242050187029]
ネットワークにおける各フィルタの重要性を核ノルム(NN)を用いて定量化する新しいエネルギー対応プルーニング手法を提案する。
FLOPの40.4/49.8%、パラメータ還元の45.9/52.9%、トップ1の精度の94.13/94.61%、CIFAR-10のResNet-56/110で競合する結果を得た。
論文 参考訳(メタデータ) (2021-03-19T15:33:16Z) - Highly Efficient Salient Object Detection with 100K Parameters [137.74898755102387]
そこで我々は,段階内および複数ステージのマルチスケール機能を効率的に活用するために,フレキシブルな畳み込みモジュールであるOctoConv(gOctConv)を提案する。
我々は、非常に軽量なモデル、すなわちCSNetを構築し、一般的なオブジェクト検出ベンチマークで、約0.2%(100k)の大規模モデルで同等のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2020-03-12T07:00:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。