Spin-$S$ $\mathrm{U}(1)$ Quantum Link Models with Dynamical Matter on a
Quantum Simulator
- URL: http://arxiv.org/abs/2305.06368v1
- Date: Wed, 10 May 2023 18:00:01 GMT
- Title: Spin-$S$ $\mathrm{U}(1)$ Quantum Link Models with Dynamical Matter on a
Quantum Simulator
- Authors: Jesse Osborne, Bing Yang, Ian P. McCulloch, Philipp Hauke, Jad C.
Halimeh
- Abstract summary: We present a bosonic mapping for the representation of gauge and electric fields with effective spin-$S$ operators.
We then propose an experimental scheme for the realization of a large-scale spin-$1$ $mathrmU(1)$ QLM using spinless bosons in an optical superlattice.
- Score: 3.1192594881563127
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum link models (QLMs) offer the realistic prospect for the practical
implementation of lattice quantum electrodynamics (QED) on modern quantum
simulators, and they provide a venue for exploring various nonergodic phenomena
relevant to quantum many-body physics. In these models, gauge and electric
fields are represented by spin-$S$ operators. So far, large-scale realizations
of QLMs have been restricted to $S=1/2$ representations, whereas the
lattice-QED limit is approached at $S\to\infty$. Here, we present a bosonic
mapping for the representation of gauge and electric fields with effective
spin-$S$ operators for arbitrarily large values of $S$. Based on this mapping,
we then propose an experimental scheme for the realization of a large-scale
spin-$1$ $\mathrm{U}(1)$ QLM using spinless bosons in an optical superlattice.
Using perturbation theory and infinite matrix product state calculations, which
work directly in the thermodynamic limit, we demonstrate the faithfulness of
the mapping and stability of gauge invariance throughout all accessible
evolution times. We further demonstrate the potential of our proposed quantum
simulator to address relevant high-energy physics by probing the
(de)confinement of an electron--positron pair by tuning the gauge coupling. Our
work provides an essential step towards gauge-theory quantum simulators in the
quantum-field-theory limit.
Related papers
- Observation of a non-Hermitian supersonic mode [6.846670002217106]
We demonstrate the power of variational quantum circuits for resource-efficient simulations of dynamical and equilibrium physics in non-Hermitian systems.
Using a variational quantum compilation scheme for fermionic systems, we reduce gate count, save qubits, and eliminate the need for postselection.
We provide an analytical example demonstrating that simulating single-qubit non-Hermitian dynamics for $Theta(log(n))$ time from certain initial states is exponentially hard on a quantum computer.
arXiv Detail & Related papers (2024-06-21T18:00:06Z) - Ergodicity Breaking Under Confinement in Cold-Atom Quantum Simulators [1.3367376307273382]
We consider the spin-$1/2$ quantum link formulation of $1+1$D quantum electrodynamics with a topological $theta$-angle.
We show an interplay between confinement and the ergodicity-breaking paradigms of quantum many-body scarring and Hilbert-space fragmentation.
arXiv Detail & Related papers (2023-01-18T19:00:01Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Large-Scale $2+1$D $\mathrm{U}(1)$ Gauge Theory with Dynamical Matter in
a Cold-Atom Quantum Simulator [3.1192594881563127]
A major driver of quantum-simulator technology is the prospect of probing high-energy phenomena in synthetic quantum matter setups at a high level of control and tunability.
Here, we propose an experimentally feasible realization of a large-scale $2+1$D $mathrmU(1)$ gauge theory with dynamical matter and gauge fields in a cold-atom quantum simulator with spinless bosons.
arXiv Detail & Related papers (2022-11-02T18:00:00Z) - Studying chirality imbalance with quantum algorithms [62.997667081978825]
We employ the (1+1) dimensional Nambu-Jona-Lasinio (NJL) model to study the chiral phase structure and chirality charge density of strongly interacting matter.
By performing the Quantum imaginary time evolution (QITE) algorithm, we simulate the (1+1) dimensional NJL model on the lattice at various temperature $T$ and chemical potentials $mu$, $mu_5$.
arXiv Detail & Related papers (2022-10-06T17:12:33Z) - Spin Current Density Functional Theory of the Quantum Spin-Hall Phase [59.50307752165016]
We apply the spin current density functional theory to the quantum spin-Hall phase.
We show that the explicit account of spin currents in the electron-electron potential of the SCDFT is key to the appearance of a Dirac cone.
arXiv Detail & Related papers (2022-08-29T20:46:26Z) - Ground-state phase diagram of quantum link electrodynamics in $(2+1)$-d [0.0]
We study a lattice gauge theory where the gauge fields, represented by spin-$frac12$ operators are coupled to a single flavor of staggered fermions.
Using matrix product states on infinite cylinders with increasing diameter, we conjecture its phase diagram in $(2+1)$-d.
Our study reveals a rich phase diagram with exotic phases and interesting phase transitions to a potential liquid-like phase.
arXiv Detail & Related papers (2021-12-01T19:00:03Z) - Photon-mediated Stroboscopic Quantum Simulation of a $\mathbb{Z}_{2}$
Lattice Gauge Theory [58.720142291102135]
Quantum simulation of lattice gauge theories (LGTs) aims at tackling non-perturbative particle and condensed matter physics.
One of the current challenges is to go beyond 1+1 dimensions, where four-body (plaquette) interactions, not contained naturally in quantum simulating devices, appear.
We show how to prepare the ground state and measure Wilson loops using state-of-the-art techniques in atomic physics.
arXiv Detail & Related papers (2021-07-27T18:10:08Z) - Towards the continuum limit of a $(1+1)$d quantum link Schwinger model [0.0]
We show the continuum limit for gauge theories regularized via finite-dimensional Hilbert spaces of quantum spin-$S$ operators.
Our findings indicate that quantum devices will in the foreseeable future be able to quantitatively probe the QED regime with quantum link models.
arXiv Detail & Related papers (2021-03-31T18:00:13Z) - Engineering analog quantum chemistry Hamiltonians using cold atoms in
optical lattices [69.50862982117127]
We benchmark the working conditions of the numerically analog simulator and find less demanding experimental setups.
We also provide a deeper understanding of the errors of the simulation appearing due to discretization and finite size effects.
arXiv Detail & Related papers (2020-11-28T11:23:06Z) - Quantum Simulation of 2D Quantum Chemistry in Optical Lattices [59.89454513692418]
We propose an analog simulator for discrete 2D quantum chemistry models based on cold atoms in optical lattices.
We first analyze how to simulate simple models, like the discrete versions of H and H$+$, using a single fermionic atom.
We then show that a single bosonic atom can mediate an effective Coulomb repulsion between two fermions, leading to the analog of molecular Hydrogen in two dimensions.
arXiv Detail & Related papers (2020-02-21T16:00:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.