論文の概要: Perpetual Humanoid Control for Real-time Simulated Avatars
- arxiv url: http://arxiv.org/abs/2305.06456v2
- Date: Wed, 24 May 2023 22:05:21 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-26 20:10:33.551737
- Title: Perpetual Humanoid Control for Real-time Simulated Avatars
- Title(参考訳): 実時間シミュレーションアバターのヒューマノイド制御
- Authors: Zhengyi Luo, Jinkun Cao, Alexander Winkler, Kris Kitani, Weipeng Xu
- Abstract要約: 本稿では,高忠実度動作模倣と耐故障動作を実現する物理に基づくヒューマノイドコントローラを提案する。
コントローラは、外部の安定化力を使わずに1万本のモーションクリップを学習できる。
実時間およびリアルタイムのマルチパーソンアバター使用事例において,映像ベースのポーズ推定器と言語ベースのモーションジェネレータからノイズのあるポーズを模倣するために,制御器の有効性を実証する。
- 参考スコア(独自算出の注目度): 90.57057308362553
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We present a physics-based humanoid controller that achieves high-fidelity
motion imitation and fault-tolerant behavior in the presence of noisy input
(e.g. pose estimates from video or generated from language) and unexpected
falls. Our controller scales up to learning ten thousand motion clips without
using any external stabilizing forces and learns to naturally recover from
fail-state. Given reference motion, our controller can perpetually control
simulated avatars without requiring resets. At its core, we propose the
progressive multiplicative control policy (PMCP), which dynamically allocates
new network capacity to learn harder and harder motion sequences. PMCP allows
efficient scaling for learning from large-scale motion databases and adding new
tasks, such as fail-state recovery, without catastrophic forgetting. We
demonstrate the effectiveness of our controller by using it to imitate noisy
poses from video-based pose estimators and language-based motion generators in
a live and real-time multi-person avatar use case.
- Abstract(参考訳): 本稿では,ノイズ入力(映像からのポーズ推定や言語からの生成など)や予期せぬ転倒の有無で,忠実な動作模倣とフォールトトレラントな動作を実現する物理ベースのヒューマノイドコントローラを提案する。
制御器は外部の安定化力を使わずに1万本のモーションクリップを学習し、自然に故障状態から回復する。
参照動作が与えられた場合、コントローラはリセットを必要とせずにシミュレートされたアバターを永久に制御できる。
その中核として,新しいネットワーク容量を動的に割り当てて,より困難で難しい動作シーケンスを学習するプログレッシブ乗法制御ポリシー(PMCP)を提案する。
pmcpは大規模なモーションデータベースから学習するための効率的なスケーリングを可能にし、破滅的な忘れることなくフェイルステートリカバリなどの新しいタスクを追加できる。
実時間および実時間多人数アバターのユースケースにおいて,映像ベースポーズ推定器と言語ベースモーションジェネレータのノイズポーズを模倣して,コントローラの有効性を実証する。
関連論文リスト
- CALM: Conditional Adversarial Latent Models for Directable Virtual
Characters [71.66218592749448]
本研究では,ユーザが制御する対話型仮想キャラクタに対して,多種多様かつ指示可能な振る舞いを生成するための条件付き適応潜在モデル(CALM)を提案する。
模倣学習を用いて、CALMは人間の動きの複雑さを捉える動きの表現を学び、キャラクターの動きを直接制御できる。
論文 参考訳(メタデータ) (2023-05-02T09:01:44Z) - Learning Low-Frequency Motion Control for Robust and Dynamic Robot
Locomotion [10.838285018473725]
実ANYmal C四重極上で8Hzの低速動作を行う学習モーションコントローラを用いて,ロバストでダイナミックな移動を実演する。
このロボットは、1.5m/sの高速度を頑健かつ反復的に達成し、不均一な地形を横切ることができ、予期せぬ外乱に抵抗することができる。
論文 参考訳(メタデータ) (2022-09-29T15:55:33Z) - QuestSim: Human Motion Tracking from Sparse Sensors with Simulated
Avatars [80.05743236282564]
人間の身体の動きのリアルタイム追跡は、AR/VRにおける没入感のある体験に不可欠である。
本稿では,HMDと2つのコントローラから疎信号を取り出す強化学習フレームワークを提案する。
一つのポリシーは、多様な移動スタイル、異なる体の大きさ、新しい環境に対して堅牢であることを示す。
論文 参考訳(メタデータ) (2022-09-20T00:25:54Z) - D&D: Learning Human Dynamics from Dynamic Camera [55.60512353465175]
本稿では、物理の法則を活かしたD&D(Learning Human Dynamics from Dynamic Camera)を紹介する。
私たちのアプローチは完全にニューラルネットワークで、物理エンジンのオフライン最適化やシミュレーションなしで動作します。
論文 参考訳(メタデータ) (2022-09-19T06:51:02Z) - Reinforcement Learning for Robust Parameterized Locomotion Control of
Bipedal Robots [121.42930679076574]
シミュレーションにおけるロコモーションポリシをトレーニングするためのモデルフリー強化学習フレームワークを提案する。
ドメインランダム化は、システムダイナミクスのバリエーションにまたがる堅牢な振る舞いを学ぶためのポリシーを奨励するために使用されます。
本研究では、目標歩行速度、歩行高さ、旋回ヨーなどの多目的歩行行動について示す。
論文 参考訳(メタデータ) (2021-03-26T07:14:01Z) - Character Controllers Using Motion VAEs [9.806910643086045]
動きのvaesを用いて,人間の運動のデータ駆動生成モデルを学ぶ。
計画や制御アルゴリズムは、このアクション空間を使って望ましい動きを生成することができる。
論文 参考訳(メタデータ) (2021-03-26T05:51:41Z) - UniCon: Universal Neural Controller For Physics-based Character Motion [70.45421551688332]
大規模動作データセットから学習することで,異なるスタイルで数千の動作を習得する物理ベースのユニバーサルニューラルコントローラ(UniCon)を提案する。
UniConは、キーボード駆動制御をサポートし、ロコモーションとアクロバティックスキルの大きなプールから引き出されたモーションシーケンスを作成し、ビデオで撮影した人を物理ベースの仮想アバターにテレポートする。
論文 参考訳(メタデータ) (2020-11-30T18:51:16Z) - Residual Force Control for Agile Human Behavior Imitation and Extended
Motion Synthesis [32.22704734791378]
強化学習は、モーションキャプチャーデータからヒューマノイド制御ポリシーを学習することで、現実的な人間の行動に大きな可能性を示してきた。
バレエダンスのような洗練された人間のスキルを再現することや、複雑な移行を伴う長期的な人間の振る舞いを安定して模倣することは、依然として非常に困難である。
動作空間に外部残留力を加えることでヒューマノイド制御ポリシーを強化する新しいアプローチである残留力制御(RFC)を提案する。
論文 参考訳(メタデータ) (2020-06-12T17:56:16Z) - NewtonianVAE: Proportional Control and Goal Identification from Pixels
via Physical Latent Spaces [9.711378389037812]
本稿では,潜在空間における比例制御性を誘導するために一意に設計された潜在動的学習フレームワークを提案する。
学習したダイナミックスモデルは画素からの比例制御を可能にし、視覚ベースのコントローラの動作クローンを劇的に単純化し、高速化し、実演からのスイッチングコントローラの模倣学習に適用した場合に、解釈可能なゴール発見を提供する。
論文 参考訳(メタデータ) (2020-06-02T21:41:38Z) - CARL: Controllable Agent with Reinforcement Learning for Quadruped
Locomotion [0.0]
CARLは、高レベルの指示で制御でき、動的環境に自然に反応できる4重結合剤である。
我々は、ジェネレーティブ・アドリラル・ネットワークを使用して、速度や方向などのハイレベルな制御を、オリジナルのアニメーションに対応するアクション・ディストリビューションに適応させる。
深部強化学習によるさらなる微調整により、エージェントは、スムーズな遷移を発生させながら、目に見えない外部摂動から回復することができる。
論文 参考訳(メタデータ) (2020-05-07T07:18:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。