論文の概要: Chain-of-Dictionary Prompting Elicits Translation in Large Language Models
- arxiv url: http://arxiv.org/abs/2305.06575v4
- Date: Tue, 9 Jul 2024 14:17:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-11 00:40:48.426742
- Title: Chain-of-Dictionary Prompting Elicits Translation in Large Language Models
- Title(参考訳): 大規模言語モデルにおける辞書プロンプト翻訳の連鎖
- Authors: Hongyuan Lu, Haoyang Huang, Dongdong Zhang, Haoran Yang, Wai Lam, Furu Wei,
- Abstract要約: 大規模言語モデル(LLM)は多言語ニューラルマシン翻訳(MNMT)において驚くほど優れた性能を示した
入力単語のサブセットに対する多言語辞書の連鎖による事前知識でLLMを拡張して翻訳能力を引き出す新しい方法であるCoDを提案する。
- 参考スコア(独自算出の注目度): 100.47154959254937
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have shown surprisingly good performance in multilingual neural machine translation (MNMT) even when trained without parallel data. Yet, despite the fact that the amount of training data is gigantic, they still struggle with translating rare words, particularly for low-resource languages. Even worse, it is usually unrealistic to retrieve relevant demonstrations for in-context learning with low-resource languages on LLMs, which restricts the practical use of LLMs for translation -- how should we mitigate this problem? To this end, we present a novel method, CoD, which augments LLMs with prior knowledge with the chains of multilingual dictionaries for a subset of input words to elicit translation abilities for LLMs. Extensive experiments indicate that augmenting ChatGPT with CoD elicits large gains by up to 13x chrF++ points for MNMT (3.08 to 42.63 for English to Serbian written in Cyrillic script) on FLORES-200 full devtest set. We further demonstrate the importance of chaining the multilingual dictionaries, as well as the superiority of CoD to few-shot demonstration for low-resource languages.
- Abstract(参考訳): 大規模言語モデル(LLM)は、並列データなしで訓練しても、MNMT(multilingual neural machine translation)において驚くほど優れた性能を示している。
しかし、トレーニングデータの量は膨大であるにもかかわらず、レアワードの翻訳に苦慮している。
さらに悪いことに、LLM上での低リソース言語によるテキスト内学習に関する関連するデモを検索することは非現実的です。
この目的のために,入力単語のサブセットに対する多言語辞書の連鎖による事前知識でLLMを増強し,LLMの翻訳能力を引き出す新しい手法であるCoDを提案する。
CoDによるChatGPTの拡張は、FLORES-200の完全なテストセット上で、MNMTの13倍のchrF++ポイント(キリル文字で書かれた英語からセルビア語への3.08から42.63)を大きく増加させることを示している。
さらに,多言語辞書のチェーン化の重要性や,低リソース言語における数ショットのデモに対するCoDの優位性も示している。
関連論文リスト
- Learning-From-Mistakes Prompting for Indigenous Language Translation [3.7790255156708397]
本稿では,低リソースの母国語翻訳を改善する手法を提案する。
我々のアプローチは、限られた数の並列翻訳例からなるデータストアの使用に基礎を置いています。
我々は、LLMをユニバーサルトランスレータとして使用するような設定において、LLMと文脈内学習技術のポテンシャルを利用する。
論文 参考訳(メタデータ) (2024-07-18T09:41:20Z) - Crosslingual Capabilities and Knowledge Barriers in Multilingual Large Language Models [62.91524967852552]
大規模言語モデル(LLM)は、多言語コーパスの事前訓練のため、一般的に多言語である。
しかし、これらのモデルは言語間で対応する概念を関連付けることができ、効果的にクロスランガルなのでしょうか?
本研究は,言語横断的課題に関する6つの技術 LLM の評価を行った。
論文 参考訳(メタデータ) (2024-06-23T15:15:17Z) - Self-Distillation for Model Stacking Unlocks Cross-Lingual NLU in 200+ Languages [2.53740603524637]
機械翻訳モデル(MT)は優れた多言語表現を生成し、低リソース言語でも強力な翻訳性能が得られる。
本研究は,MTエンコーダをサンプル効率のよい自己蒸留法により,言語バックボーンに直接組み込むことにより,両世界のベストを得られる。
MT-LLMは、MTエンコーダから固有の多言語表現アライメントを保持しており、低リソース言語は英語中心のLLMに埋め込まれた豊富な知識を取り入れることができる。
論文 参考訳(メタデータ) (2024-06-18T16:00:20Z) - Fine-Tuning Large Language Models to Translate: Will a Touch of Noisy Data in Misaligned Languages Suffice? [33.376648335299116]
大きな言語モデル(LLM)は、32のパラレル文で微調整された後、強い翻訳能力を示す。
英語のみを対象とするLLMは、非英語への翻訳を妨げるタスクの誤解釈につながる可能性がある。
未表現言語で合成されたデータは、顕著な効果が低い。
論文 参考訳(メタデータ) (2024-04-22T12:21:12Z) - TaCo: Enhancing Cross-Lingual Transfer for Low-Resource Languages in LLMs through Translation-Assisted Chain-of-Thought Processes [9.254047358707014]
本稿では,Alpaca-52K,Dolly-15K,Vicuna Benchmarkを132言語に翻訳する多言語インストラクション・チューニングデータセット(MITS)を紹介する。
次に,emphTaCo: Translation-Assisted Cross-Lingualityという新たな手法を提案する。
提案手法は,Vicuna Benchmark データセットの低リソース言語に対して 82% のスコアで GPT-4 を圧縮し,命令チューニングと比較して性能を2倍にすることを示す。
論文 参考訳(メタデータ) (2023-11-17T06:55:32Z) - CulturaX: A Cleaned, Enormous, and Multilingual Dataset for Large
Language Models in 167 Languages [86.90220551111096]
大規模言語モデル(LLM)のトレーニングデータセットは、完全には公開されないことが多い。
我々は167言語で6.3兆のトークンを持つ相当な多言語データセットであるCulturaXを紹介する。
論文 参考訳(メタデータ) (2023-09-17T23:49:10Z) - Democratizing LLMs for Low-Resource Languages by Leveraging their English Dominant Abilities with Linguistically-Diverse Prompts [75.33019401706188]
大規模言語モデル(LLM)は、少数の例を単純に観察することで、効果的にタスクを実行することが知られている。
我々は,LLMが任意の言語から英語に翻訳するよう促すために,多種多様な高ソース言語から合成例を組み立てることを提案する。
我々の教師なしプロンプト法は、英語と13のIndic言語と21のアフリカ低リソース言語間の翻訳において、異なる大きさのLLMにおける教師付き少ショット学習と同等に機能する。
論文 参考訳(メタデータ) (2023-06-20T08:27:47Z) - Translate to Disambiguate: Zero-shot Multilingual Word Sense
Disambiguation with Pretrained Language Models [67.19567060894563]
事前訓練された言語モデル(PLM)は、豊富な言語間知識を学習し、多様なタスクでうまく機能するように微調整することができる。
C-WLT(Contextual Word-Level Translation)を用いた言語間単語感覚の捉え方の検討を行った。
モデルのサイズが大きくなるにつれて、PLMはより言語間単語認識の知識をエンコードし、WLT性能を改善するためのコンテキストを良くする。
論文 参考訳(メタデータ) (2023-04-26T19:55:52Z) - Multilingual Machine Translation with Large Language Models: Empirical Results and Analysis [103.89753784762445]
大規模言語モデル(LLM)は多言語機械翻訳(MMT)の処理において顕著な可能性を示した。
本稿では, MMT における LLM の利点と課題を体系的に検討する。
また,ChatGPTとGPT-4を含む8つのLLMを徹底的に評価した。
論文 参考訳(メタデータ) (2023-04-10T15:51:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。