論文の概要: Algorithmic Fairness: A Tolerance Perspective
- arxiv url: http://arxiv.org/abs/2405.09543v1
- Date: Fri, 26 Apr 2024 08:16:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-27 03:17:55.485495
- Title: Algorithmic Fairness: A Tolerance Perspective
- Title(参考訳): アルゴリズムフェアネス:寛容な視点
- Authors: Renqiang Luo, Tao Tang, Feng Xia, Jiaying Liu, Chengpei Xu, Leo Yu Zhang, Wei Xiang, Chengqi Zhang,
- Abstract要約: この調査はアルゴリズムの公正性に関する既存の文献を掘り下げ、特にその多面的な社会的影響を強調している。
我々は「寛容」に基づく新しい分類法を導入し、公正な結果の変動が許容される度合いとして定義する。
我々の体系的なレビューは多様な産業をカバーし、アルゴリズムによる意思決定と社会的株式のバランスに関する重要な洞察を明らかにしている。
- 参考スコア(独自算出の注目度): 31.882207568746168
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in machine learning and deep learning have brought algorithmic fairness into sharp focus, illuminating concerns over discriminatory decision making that negatively impacts certain individuals or groups. These concerns have manifested in legal, ethical, and societal challenges, including the erosion of trust in intelligent systems. In response, this survey delves into the existing literature on algorithmic fairness, specifically highlighting its multifaceted social consequences. We introduce a novel taxonomy based on 'tolerance', a term we define as the degree to which variations in fairness outcomes are acceptable, providing a structured approach to understanding the subtleties of fairness within algorithmic decisions. Our systematic review covers diverse industries, revealing critical insights into the balance between algorithmic decision making and social equity. By synthesizing these insights, we outline a series of emerging challenges and propose strategic directions for future research and policy making, with the goal of advancing the field towards more equitable algorithmic systems.
- Abstract(参考訳): 機械学習とディープラーニングの最近の進歩は、アルゴリズムの公正性を鋭い焦点にし、特定の個人やグループに悪影響を及ぼす差別的決定に対する懸念を浮き彫りにした。
これらの懸念は、知的システムに対する信頼の侵食を含む法的、倫理的、社会的課題に現れてきた。
これに対し、この調査はアルゴリズムの公正性に関する既存の文献を掘り下げ、特にその多面的な社会的影響を強調した。
我々は,「寛容」に基づく新しい分類法を導入する。これは,公正性の結果の変動が許容される度合いとして定義し,アルゴリズム決定における公正性の微妙さを理解するための構造化されたアプローチを提供する。
我々の体系的なレビューは多様な産業をカバーし、アルゴリズムによる意思決定と社会的株式のバランスに関する重要な洞察を明らかにしている。
これらの知見を合成することにより、我々は、より公平なアルゴリズムシステムに向けて分野を前進させることを目的として、一連の課題の概要を述べ、今後の研究と政策立案のための戦略的な方向性を提案する。
関連論文リスト
- A Survey on Intersectional Fairness in Machine Learning: Notions,
Mitigation, and Challenges [11.885166133818819]
機械学習システムの採用により、公平性への懸念が高まっている。
公平さと緩和の交叉観念に関する分類を提示する。
重要な課題を特定し、今後の方向性に関するガイドラインを研究者に提供する。
論文 参考訳(メタデータ) (2023-05-11T16:49:22Z) - Fairness meets Cross-Domain Learning: a new perspective on Models and
Metrics [80.07271410743806]
クロスドメイン学習(CD)とモデルフェアネスの関係について検討する。
いくつかの人口集団にまたがる顔画像と医療画像のベンチマークと、分類とローカライゼーションタスクについて紹介する。
本研究は,3つの最先端フェアネスアルゴリズムとともに,14のCDアプローチをカバーし,前者が後者に勝ることを示す。
論文 参考訳(メタデータ) (2023-03-25T09:34:05Z) - Individual Fairness under Uncertainty [26.183244654397477]
アルゴリズムフェアネス(英: Algorithmic Fairness)は、機械学習(ML)アルゴリズムにおいて確立された領域である。
本稿では,クラスラベルの検閲によって生じる不確実性に対処する,個別の公正度尺度とそれに対応するアルゴリズムを提案する。
この視点は、現実世界のアプリケーションデプロイメントにおいて、より現実的なフェアネス研究のモデルである、と我々は主張する。
論文 参考訳(メタデータ) (2023-02-16T01:07:58Z) - Fairness in Matching under Uncertainty [78.39459690570531]
アルゴリズム的な二面市場は、こうした設定における公平性の問題に注意を向けている。
我々は、利益の不確実性を尊重する両面の市場設定において、個々人の公正性の概念を公理化する。
そこで我々は,配当よりも公平なユーティリティ最大化分布を求めるために,線形プログラミングフレームワークを設計する。
論文 参考訳(メタデータ) (2023-02-08T00:30:32Z) - Fair Decision-making Under Uncertainty [1.5688552250473473]
公平性制約を考慮した縦断的検閲学習問題について検討する。
検閲情報を含む新たに考案された公正概念と,検閲の存在下での公正な予測のための一般的な枠組みが,不確実性の下での計測と差別を可能にしていることを示す。
論文 参考訳(メタデータ) (2023-01-29T05:42:39Z) - Causal Fairness Analysis [68.12191782657437]
意思決定設定における公平性の問題を理解し、モデル化し、潜在的に解決するためのフレームワークを導入します。
我々のアプローチの主な洞察は、観測データに存在する格差の定量化と、基礎となる、しばしば観測されていない、因果的なメカニズムの収集を結びつけることである。
本研究は,文献中の異なる基準間の関係を整理し,説明するための最初の体系的試みであるフェアネスマップにおいて,本研究の成果を左右するものである。
論文 参考訳(メタデータ) (2022-07-23T01:06:34Z) - Developing a Philosophical Framework for Fair Machine Learning: Lessons
From The Case of Algorithmic Collusion [0.0]
機械学習アルゴリズムが新しい文脈に適用されるにつれて、結果の害と不正は質的に異なる。
フェアネスのメトリクスと定義を開発する機械学習における既存の研究パラダイムは、これらの質的に異なる種類の不正を考慮できない。
本稿では,公正度指標の開発と適用を目指す機械学習の研究者や実践者を対象とした倫理的枠組みを提案する。
論文 参考訳(メタデータ) (2022-07-05T16:21:56Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
この学際的立場の論文は、AIにおける公平性と差別に関する様々な懸念を考察し、AI規制がそれらにどう対処するかについて議論する。
私たちはまず、法律、(AI)産業、社会技術、そして(道徳)哲学のレンズを通して、AIと公正性に注目し、様々な視点を提示します。
我々は、AI公正性の懸念の観点から、AI法の取り組みを成功に導くために、AIレギュレーションが果たす役割を特定し、提案する。
論文 参考訳(メタデータ) (2022-06-08T12:32:08Z) - Anatomizing Bias in Facial Analysis [86.79402670904338]
既存の顔分析システムでは、特定の集団群に対して偏りのある結果が得られることが示されている。
これらのシステムは、個人の性別、アイデンティティ、肌のトーンに基づいて差別されないようにすることが義務づけられている。
これはAIシステムにおけるバイアスの識別と緩和の研究につながった。
論文 参考訳(メタデータ) (2021-12-13T09:51:13Z) - A Sociotechnical View of Algorithmic Fairness [16.184328505946763]
アルゴリズムの公正さは、自動意思決定におけるシステム的差別を緩和する新しい技術として位置づけられている。
公平性は本質的に社会的概念であり、それゆえにアルゴリズム的公正性のための技術は社会技術的レンズを通してアプローチされるべきである、と我々は主張する。
論文 参考訳(メタデータ) (2021-09-27T21:17:16Z) - On Consequentialism and Fairness [64.35872952140677]
機械学習におけるフェアネスの共通定義について、逐次的批判を行う。
学習とランダム化の問題に関するより広範な議論で締めくくります。
論文 参考訳(メタデータ) (2020-01-02T05:39:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。