論文の概要: Self-Learning Symmetric Multi-view Probabilistic Clustering
- arxiv url: http://arxiv.org/abs/2305.07307v3
- Date: Fri, 16 Aug 2024 06:14:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-19 21:16:11.736744
- Title: Self-Learning Symmetric Multi-view Probabilistic Clustering
- Title(参考訳): 自己学習型対称多視点確率クラスタリング
- Authors: Junjie Liu, Junlong Liu, Rongxin Jiang, Yaowu Chen, Chen Shen, Jieping Ye,
- Abstract要約: マルチビュークラスタリング(MVC)は、複数の視点から知識を学ぶための多くの取り組みによって、大きな進歩を遂げている。
既存のほとんどのメソッドは適用できないか、あるいは不完全なMVCに追加の手順を必要とする。
自己学習対称多視点確率クラスタリングという,不完全かつ完全なMVCのための新しい統合フレームワークを提案する。
- 参考スコア(独自算出の注目度): 35.96327818838784
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-view Clustering (MVC) has achieved significant progress, with many efforts dedicated to learn knowledge from multiple views. However, most existing methods are either not applicable or require additional steps for incomplete MVC. Such a limitation results in poor-quality clustering performance and poor missing view adaptation. Besides, noise or outliers might significantly degrade the overall clustering performance, which are not handled well by most existing methods. In this paper, we propose a novel unified framework for incomplete and complete MVC named self-learning symmetric multi-view probabilistic clustering (SLS-MPC). SLS-MPC proposes a novel symmetric multi-view probability estimation and equivalently transforms multi-view pairwise posterior matching probability into composition of each view's individual distribution, which tolerates data missing and might extend to any number of views. Then, SLS-MPC proposes a novel self-learning probability function without any prior knowledge and hyper-parameters to learn each view's individual distribution. Next, graph-context-aware refinement with path propagation and co-neighbor propagation is used to refine pairwise probability, which alleviates the impact of noise and outliers. Finally, SLS-MPC proposes a probabilistic clustering algorithm to adjust clustering assignments by maximizing the joint probability iteratively without category information. Extensive experiments on multiple benchmarks show that SLS-MPC outperforms previous state-of-the-art methods.
- Abstract(参考訳): マルチビュークラスタリング(MVC)は、複数の視点から知識を学ぶための多くの取り組みによって、大きな進歩を遂げている。
しかし、既存のほとんどのメソッドは適用できないか、または不完全なMVCに追加の手順を必要とする。
このような制限は、品質の悪いクラスタリング性能と、貧弱なビュー適応をもたらす。
さらに、ノイズやアウトレイラはクラスタリング全体のパフォーマンスを著しく低下させる可能性があるが、既存のほとんどのメソッドではうまく処理できない。
本稿では,SLS-MPC(Self-learning symmetric multi-view probabilistic clustering)という,不完全かつ完全なMVCのための新しい統合フレームワークを提案する。
SLS-MPCは、新しい対称な多視点確率推定を提案し、同値に、多視点のペアワイドな後続マッチング確率を、各ビューの個々の分布の構成に変換する。
そこで,SLS-MPCは,各ビューの個々の分布を学習するために,事前知識やハイパーパラメータを含まない新しい自己学習確率関数を提案する。
次に、経路伝搬と隣り合う伝播を併用したグラフコンテキスト対応改良法を用いて、雑音や外周の影響を緩和するペアワイズ確率を改良する。
最後に、SLS-MPCは、カテゴリ情報なしで反復的に結合確率を最大化し、クラスタリングの割り当てを調整する確率的クラスタリングアルゴリズムを提案する。
複数のベンチマークにおいて、SLS-MPCは従来の最先端手法よりも優れていた。
関連論文リスト
- cDP-MIL: Robust Multiple Instance Learning via Cascaded Dirichlet Process [23.266122629592807]
マルチプル・インスタンス・ラーニング (MIL) は全スライス・ヒストパラメトリック・イメージ (WSI) 解析に広く応用されている。
MILの既存の集約戦略は、主にインスタンス間の一階距離に依存するが、各インスタンスの真の特徴分布を正確に近似することができない。
本稿では、複数のインスタンス学習のための新しいベイズ非パラメトリックフレームワークを提案し、WSIのインスタンス・ツー・バッグ特性を組み込むためにディリクレ・プロセスのカスケード(cDP)を採用する。
論文 参考訳(メタデータ) (2024-07-16T07:28:39Z) - CDIMC-net: Cognitive Deep Incomplete Multi-view Clustering Network [53.72046586512026]
我々は,認知的深層不完全多視点クラスタリングネットワーク(CDIMC-net)という,新しい不完全多視点クラスタリングネットワークを提案する。
ビュー固有のディープエンコーダとグラフ埋め込み戦略をフレームワークに組み込むことで、各ビューの高レベルな特徴とローカル構造をキャプチャする。
人間の認知、すなわち、簡単からハードに学ぶことに基づいて、モデルトレーニングのための最も自信あるサンプルを選択するための自己評価戦略を導入する。
論文 参考訳(メタデータ) (2024-03-28T15:45:03Z) - One-Step Multi-View Clustering Based on Transition Probability [61.841829428397034]
遷移確率に基づくワンステップマルチビュークラスタリング(OSMVC-TP)を導入する。
本手法は,アンカーポイントからカテゴリへの遷移確率を直接学習し,サンプルからカテゴリへの遷移確率を計算する。
異なる視点でラベルの整合性を維持するために、ソフトラベルからなるテンソルにシャッテン p-ノルムの制約を適用する。
論文 参考訳(メタデータ) (2024-03-03T09:43:23Z) - Deep Incomplete Multi-view Clustering with Cross-view Partial Sample and
Prototype Alignment [50.82982601256481]
深層不完全なマルチビュークラスタリングのためのクロスビュー部分サンプルとプロトタイプアライメントネットワーク(CPSPAN)を提案する。
従来のコントラストベースの手法とは異なり、インスタンスとインスタンスの対応構築を導くために、ペア観測データアライメントを「プロキシ監視信号」として採用する。
論文 参考訳(メタデータ) (2023-03-28T02:31:57Z) - MHCCL: Masked Hierarchical Cluster-Wise Contrastive Learning for
Multivariate Time Series [20.008535430484475]
Masked Hierarchical Cluster-wise Contrastive Learning modelを示す。
時系列の複数の潜在パーティションからなる階層構造から得られる意味情報を利用する。
教師なし時系列表現学習における最先端の手法よりも優れていることが示されている。
論文 参考訳(メタデータ) (2022-12-02T12:42:53Z) - A One-shot Framework for Distributed Clustered Learning in Heterogeneous
Environments [54.172993875654015]
異種環境における分散学習のためのコミュニケーション効率化手法のファミリーを提案する。
ユーザによるローカル計算に基づくワンショットアプローチと、サーバにおけるクラスタリングベースのアグリゲーションステップは、強力な学習保証を提供する。
厳密な凸問題に対しては,ユーザ毎のデータ点数がしきい値を超える限り,提案手法はサンプルサイズの観点から順序最適平均二乗誤差率を達成する。
論文 参考訳(メタデータ) (2022-09-22T09:04:10Z) - Adaptively-weighted Integral Space for Fast Multiview Clustering [54.177846260063966]
線形複雑度に近い高速マルチビュークラスタリングのための適応重み付き積分空間(AIMC)を提案する。
特に、ビュー生成モデルは、潜在積分空間からのビュー観測を再構成するために設計されている。
いくつかの実世界のデータセットで実施された実験は、提案したAIMC法の優位性を確認した。
論文 参考訳(メタデータ) (2022-08-25T05:47:39Z) - Localized Sparse Incomplete Multi-view Clustering [22.009806900278786]
本稿では,ローカライズされたスパース不完全なマルチビュークラスタリング(LSIMVC)という,シンプルだが効果的な手法を提案する。
このような問題に対処するために,ローカライズされたスパース不完全なマルチビュークラスタリング(LSIMVC)という,シンプルだが効果的な手法を提案する。
論文 参考訳(メタデータ) (2022-08-05T05:48:28Z) - Deep Multi-View Semi-Supervised Clustering with Sample Pairwise
Constraints [10.226754903113164]
本稿では,ネットワークファインタニングにおける3種類の損失を協調的に最適化するDMSC法を提案する。
提案手法は,最先端のマルチビューやシングルビューの競合よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-06-10T08:51:56Z) - Trusted Multi-View Classification [76.73585034192894]
本稿では,信頼された多視点分類と呼ばれる新しい多視点分類手法を提案する。
さまざまなビューをエビデンスレベルで動的に統合することで、マルチビュー学習のための新しいパラダイムを提供する。
提案アルゴリズムは,分類信頼性とロバスト性の両方を促進するために,複数のビューを併用する。
論文 参考訳(メタデータ) (2021-02-03T13:30:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。