論文の概要: Universal expressiveness of variational quantum classifiers and quantum
kernels for support vector machines
- arxiv url: http://arxiv.org/abs/2207.05865v1
- Date: Tue, 12 Jul 2022 22:03:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-15 04:35:15.180076
- Title: Universal expressiveness of variational quantum classifiers and quantum
kernels for support vector machines
- Title(参考訳): 支援ベクトルマシンのための変分量子分類器と量子カーネルの普遍表現性
- Authors: Jonas J\"ager and Roman V. Krems
- Abstract要約: 量子カーネルを用いた変分量子分類器(VQC)とサポートベクトルマシン(QSVM)は、k-Forrelation問題に基づく分類問題を解くことができることを示す。
この結果から,任意のBQP問題に対して,VQCとQSVMを効率的に解ける特徴写像と量子カーネルが存在することが示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning is considered to be one of the most promising applications
of quantum computing. Therefore, the search for quantum advantage of the
quantum analogues of machine learning models is a key research goal. Here, we
show that variational quantum classifiers (VQC) and support vector machines
with quantum kernels (QSVM) can solve a classification problem based on the
k-Forrelation problem, which is known to be PromiseBQP-complete. Because the
PromiseBQP complexity class includes all Bounded-Error Quantum Polynomial-Time
(BQP) decision problems, our results imply that there exists a feature map and
a quantum kernel that make VQC and QSVM efficient solvers for any BQP problem.
This means that the feature map of VQC or the quantum kernel of QSVM can be
designed to have quantum advantage for any classification problem that cannot
be classically solved in polynomial time but contrariwise by a quantum
computer.
- Abstract(参考訳): 機械学習は量子コンピューティングの最も有望な応用の一つと考えられている。
したがって、機械学習モデルの量子アナログの量子的優位性を求めることが重要な研究目標である。
ここでは、変分量子分類器(VQC)と量子カーネル付きベクトルマシン(QSVM)が、PromiseBQP完全であることが知られているk-Forrelation問題に基づく分類問題を解くことができることを示す。
PromiseBQP複雑性クラスは、すべての境界誤差量子多項式時間(BQP)決定問題を含むため、この結果は、任意のBQP問題に対してVQCとQSVMを効率的に解ける特徴写像と量子カーネルが存在することを示唆している。
これは、vqc の機能マップや qsvm の量子カーネルは、多項式時間で古典的に解くことはできないが量子コンピュータでは逆の分類問題に対して量子的な優位性を持つように設計できることを意味する。
関連論文リスト
- Extending Quantum Perceptrons: Rydberg Devices, Multi-Class Classification, and Error Tolerance [67.77677387243135]
量子ニューロモーフィックコンピューティング(QNC)は、量子計算とニューラルネットワークを融合して、量子機械学習(QML)のためのスケーラブルで耐雑音性のあるアルゴリズムを作成する
QNCの中核は量子パーセプトロン(QP)であり、相互作用する量子ビットのアナログダイナミクスを利用して普遍的な量子計算を可能にする。
論文 参考訳(メタデータ) (2024-11-13T23:56:20Z) - Quantum Circuit Learning on NISQ Hardware [0.0]
現在の量子コンピュータは小さく、エラーを起こしやすいシステムである。
フォールトトレラントな量子コンピュータは近い将来は利用できない。
我々は,IBM量子コンピュータ上で最大3キュービットのQCL回路が実行可能であることを示す。
論文 参考訳(メタデータ) (2024-05-03T13:00:32Z) - QNEAT: Natural Evolution of Variational Quantum Circuit Architecture [95.29334926638462]
我々は、ニューラルネットワークの量子対する最も有望な候補として登場した変分量子回路(VQC)に注目した。
有望な結果を示す一方で、バレン高原、重みの周期性、アーキテクチャの選択など、さまざまな問題のために、VQCのトレーニングは困難である。
本稿では,VQCの重みとアーキテクチャの両方を最適化するために,自然進化にインスパイアされた勾配のないアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-04-14T08:03:20Z) - Delegated variational quantum algorithms based on quantum homomorphic
encryption [69.50567607858659]
変分量子アルゴリズム(VQA)は、量子デバイス上で量子アドバンテージを達成するための最も有望な候補の1つである。
クライアントのプライベートデータは、そのような量子クラウドモデルで量子サーバにリークされる可能性がある。
量子サーバが暗号化データを計算するための新しい量子ホモモルフィック暗号(QHE)スキームが構築されている。
論文 参考訳(メタデータ) (2023-01-25T07:00:13Z) - TeD-Q: a tensor network enhanced distributed hybrid quantum machine
learning framework [59.07246314484875]
TeD-Qは、量子機械学習のためのオープンソースのソフトウェアフレームワークである。
古典的な機械学習ライブラリと量子シミュレータをシームレスに統合する。
量子回路とトレーニングの進捗をリアルタイムで視覚化できるグラフィカルモードを提供する。
論文 参考訳(メタデータ) (2023-01-13T09:35:05Z) - Expressive Quantum Perceptrons for Quantum Neuromorphic Computing [1.7636846875530183]
量子ニューロモルフィックコンピューティング(QNC)は量子機械学習(QML)のサブフィールドである
量子パーセプトロン(QP)と呼ばれるQNCアーキテクチャのためのビルディングブロックを提案する。
相互作用する量子ビットと可変結合定数のアナログダイナミクスに基づくQPの計算。
我々は、QPは制限された資源を持つ古典パーセプトロンと同等の量子であり、ニューロンの単純な数学的モデルであることを示す。
論文 参考訳(メタデータ) (2022-11-14T02:50:42Z) - Parameterized Quantum Circuits with Quantum Kernels for Machine
Learning: A Hybrid Quantum-Classical Approach [0.8722210937404288]
Kernel ized Quantum Circuits (PQCs) は一般に量子機械学習(QML)へのハイブリッドアプローチで使用される。
我々は、PQCと量子カーネルの重要な側面として、PQC、量子カーネル、量子アドバンテージを持つ量子カーネル、量子カーネルのトレーニング可能性について論じる。
論文 参考訳(メタデータ) (2022-09-28T22:14:41Z) - Deterministic and random features for large-scale quantum kernel machine [0.9404723842159504]
提案した決定論的およびランダムな特徴を用いて量子カーネル法(QKM)をスケーラブルにすることができることを示す。
O(1,000) sim O(10,000)$トレーニングデータを含むデータセットを用いた数値実験は,本手法の有効性を裏付けるものである。
論文 参考訳(メタデータ) (2022-09-05T13:22:34Z) - Open Source Variational Quantum Eigensolver Extension of the Quantum
Learning Machine (QLM) for Quantum Chemistry [0.0]
我々は,化学に着想を得た適応手法の使用と開発のための新しいオープンソースQCパッケージ,Open-VQEを紹介した。
Atos Quantum Learning Machine (QLM)は、コンピュータプログラムを記述、最適化できる汎用プログラミングフレームワークである。
OpenVQEとともに、新しいオープンソースモジュールであるmyQLMFermion(QC開発において重要な重要なQLMリソースを含む)を紹介します。
論文 参考訳(メタデータ) (2022-06-17T14:24:22Z) - Towards understanding the power of quantum kernels in the NISQ era [79.8341515283403]
量子カーネルの利点は,大規模データセット,計測回数の少ないもの,システムノイズなどにおいて消失することを示した。
我々の研究は、NISQデバイス上で量子優位性を得るための先進量子カーネルの探索に関する理論的ガイダンスを提供する。
論文 参考訳(メタデータ) (2021-03-31T02:41:36Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
本稿では、QAS(Quantum Architecture Search)と呼ばれるリソースと実行時の効率的なスキームを提案する。
QASは、よりノイズの多い量子ゲートを追加することで得られる利点と副作用のバランスをとるために、自動的にほぼ最適アンサッツを求める。
数値シミュレータと実量子ハードウェアの両方に、IBMクラウドを介してQASを実装し、データ分類と量子化学タスクを実現する。
論文 参考訳(メタデータ) (2020-10-20T12:06:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。