論文の概要: A Temporal Planning Framework for Multi-Agent Systems via LLM-Aided Knowledge Base Management
- arxiv url: http://arxiv.org/abs/2502.19135v1
- Date: Wed, 26 Feb 2025 13:51:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-27 14:56:24.559533
- Title: A Temporal Planning Framework for Multi-Agent Systems via LLM-Aided Knowledge Base Management
- Title(参考訳): LLM支援知識ベース管理によるマルチエージェントシステムのための時間的計画フレームワーク
- Authors: Enrico Saccon, Ahmet Tikna, Davide De Martini, Edoardo Lamon, Luigi Palopoli, Marco Roveri,
- Abstract要約: 本稿では,大規模言語モデル(LLM)とPrologベースの知識管理とマルチロボットタスクの計画を統合したPLANTORという新しいフレームワークを提案する。
その結果,LLMは人間からのフィードバックの少ない正確な知識ベースを生成でき,Prologは形式的正当性と説明可能性を保証することがわかった。
このアプローチは、柔軟でスケーラブルで人間に理解可能な計画を必要とする高度なロボティクスタスクのためのLLM統合の可能性を強調している。
- 参考スコア(独自算出の注目度): 5.548477348501636
- License:
- Abstract: This paper presents a novel framework, called PLANTOR (PLanning with Natural language for Task-Oriented Robots), that integrates Large Language Models (LLMs) with Prolog-based knowledge management and planning for multi-robot tasks. The system employs a two-phase generation of a robot-oriented knowledge base, ensuring reusability and compositional reasoning, as well as a three-step planning procedure that handles temporal dependencies, resource constraints, and parallel task execution via mixed-integer linear programming. The final plan is converted into a Behaviour Tree for direct use in ROS2. We tested the framework in multi-robot assembly tasks within a block world and an arch-building scenario. Results demonstrate that LLMs can produce accurate knowledge bases with modest human feedback, while Prolog guarantees formal correctness and explainability. This approach underscores the potential of LLM integration for advanced robotics tasks requiring flexible, scalable, and human-understandable planning.
- Abstract(参考訳): 本稿ではPLANTOR(PLanning with Natural Language for Task-Oriented Robots)と呼ばれる新しいフレームワークを提案する。
このシステムは、ロボット指向の知識ベースを2段階生成し、再利用性と構成的推論を保証するとともに、時間的依存、リソース制約、および混合整数線形プログラミングによる並列タスク実行を扱う3段階の計画手順を採用する。
最後の計画は、ROS2で直接使用するために、ビヘイビアツリーに変換される。
ブロックワールド内のマルチロボットアセンブリタスクとアーチ構築シナリオで,このフレームワークをテストした。
その結果,LLMは人間からのフィードバックの少ない正確な知識ベースを生成でき,Prologは形式的正当性と説明可能性を保証することがわかった。
このアプローチは、柔軟でスケーラブルで人間に理解可能な計画を必要とする高度なロボティクスタスクのためのLLM統合の可能性を強調している。
関連論文リスト
- LLM-Generated Heuristics for AI Planning: Do We Even Need Domain-Independence Anymore? [87.71321254733384]
大規模言語モデル(LLM)は、特定の計画問題に適した計画手法を生成することができる。
LLMは、いくつかの標準IPCドメインで最先端のパフォーマンスを達成することができる。
これらの結果がパラダイムシフトを意味するのか、既存の計画手法をどのように補完するかについて議論する。
論文 参考訳(メタデータ) (2025-01-30T22:21:12Z) - Zero-shot Robotic Manipulation with Language-guided Instruction and Formal Task Planning [16.89900521727246]
本稿では,言語誘導型シンボリックタスク計画(LM-SymOpt)フレームワークの最適化を提案する。
大規模言語モデルからの世界的知識と公式な推論を組み合わせた最初のエキスパートフリーな計画フレームワークです。
実験の結果,LM-SymOpt は既存の LLM ベースの計画手法よりも優れていた。
論文 参考訳(メタデータ) (2025-01-25T13:33:22Z) - Interactive and Expressive Code-Augmented Planning with Large Language Models [62.799579304821826]
大きな言語モデル(LLM)は、常識的推論と対話的な意思決定において強力な能力を示す。
近年,制御フローなどのコード・アジャセント技術を用いてLCM出力を構造化し,計画性能を向上させる技術が提案されている。
完全コード表現で動的なLEM計画手法であるREPL-Planを提案する。
論文 参考訳(メタデータ) (2024-11-21T04:23:17Z) - Unlocking Reasoning Potential in Large Langauge Models by Scaling Code-form Planning [94.76546523689113]
CodePlanは、テキストコード形式の計画を生成し、追跡するフレームワークで、高いレベルの構造化された推論プロセスの概要を擬似コードで示します。
CodePlanは、洗練された推論タスク固有のリッチなセマンティクスと制御フローを効果的にキャプチャする。
反応を直接生成するのに比べて25.1%の相対的な改善が達成されている。
論文 参考訳(メタデータ) (2024-09-19T04:13:58Z) - Nl2Hltl2Plan: Scaling Up Natural Language Understanding for Multi-Robots Through Hierarchical Temporal Logic Task Representation [8.180994118420053]
Nl2Hltl2Planは自然言語コマンドを階層線形時間論理(LTL)に変換するフレームワーク
まず、LLMは命令を階層的なタスクツリーに変換し、論理的および時間的関係をキャプチャする。
次に、微調整されたLLMは、サブタスクをフラットな公式に変換し、階層的な仕様に集約する。
論文 参考訳(メタデータ) (2024-08-15T14:46:13Z) - Learning adaptive planning representations with natural language
guidance [90.24449752926866]
本稿では,タスク固有の計画表現を自動構築するフレームワークであるAdaについて述べる。
Adaは、プランナー互換の高レベルアクション抽象化と、特定の計画タスク領域に適応した低レベルコントローラのライブラリを対話的に学習する。
論文 参考訳(メタデータ) (2023-12-13T23:35:31Z) - When Prolog meets generative models: a new approach for managing
knowledge and planning in robotic applications [3.8817507108225873]
本稿では,Prolog言語を用いたロボット指向の知識管理システムを提案する。
このフレームワークはオープンソースのツールセットによってサポートされており、現実的なアプリケーションで示されています。
論文 参考訳(メタデータ) (2023-09-26T16:26:17Z) - ISR-LLM: Iterative Self-Refined Large Language Model for Long-Horizon
Sequential Task Planning [7.701407633867452]
大規模言語モデル(LLM)は、タスクに依存しないプランナとして一般化性を高める可能性を提供する。
ISR-LLMは,反復的な自己複製プロセスを通じてLCMに基づく計画を改善する新しいフレームワークである。
ISR-LLM は現状の LLM ベースのプランナに比べてタスク達成率を大幅に向上できることを示す。
論文 参考訳(メタデータ) (2023-08-26T01:31:35Z) - Learning to Reason over Scene Graphs: A Case Study of Finetuning GPT-2
into a Robot Language Model for Grounded Task Planning [45.51792981370957]
本研究では,ロボットタスク計画における小クラス大規模言語モデル(LLM)の適用性について,計画立案者が順次実行するためのサブゴール仕様にタスクを分解することを学ぶことによって検討する。
本手法は,シーングラフとして表現される領域上でのLLMの入力に基づいて,人間の要求を実行可能なロボット計画に変換する。
本研究は,LLMに格納された知識を長期タスクプランニングに効果的に活用できることを示唆し,ロボット工学におけるニューロシンボリックプランニング手法の今後の可能性を示すものである。
論文 参考訳(メタデータ) (2023-05-12T18:14:32Z) - ProgPrompt: Generating Situated Robot Task Plans using Large Language
Models [68.57918965060787]
大規模言語モデル(LLM)は、タスク計画中の潜在的な次のアクションを評価するために使用することができる。
本稿では, プログラム型LCMプロンプト構造を用いて, 配置環境間での計画生成機能を実現する。
論文 参考訳(メタデータ) (2022-09-22T20:29:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。