論文の概要: Meta-DM: Applications of Diffusion Models on Few-Shot Learning
- arxiv url: http://arxiv.org/abs/2305.08092v1
- Date: Sun, 14 May 2023 08:05:30 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-16 17:44:33.322864
- Title: Meta-DM: Applications of Diffusion Models on Few-Shot Learning
- Title(参考訳): meta-dm: 限定学習における拡散モデルの応用
- Authors: Wentao Hu, Xiurong Jiang, Jiarun Liu, Yuqi Yang, Hui Tian
- Abstract要約: 拡散モデルに基づく数ショット学習問題に対するデータ処理モジュールであるMeta-DMを提案する。
本稿では,Meta-DMの理論解析を行い,その性能をいくつかのアルゴリズムで評価する。
実験の結果,Meta-DMと特定の手法を組み合わせることで,最先端の成果が得られることがわかった。
- 参考スコア(独自算出の注目度): 7.330541036752522
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the field of few-shot learning (FSL), extensive research has focused on
improving network structures and training strategies. However, the role of data
processing modules has not been fully explored. Therefore, in this paper, we
propose Meta-DM, a generalized data processing module for FSL problems based on
diffusion models. Meta-DM is a simple yet effective module that can be easily
integrated with existing FSL methods, leading to significant performance
improvements in both supervised and unsupervised settings. We provide a
theoretical analysis of Meta-DM and evaluate its performance on several
algorithms. Our experiments show that combining Meta-DM with certain methods
achieves state-of-the-art results.
- Abstract(参考訳): 数ショット学習(FSL)の分野では、ネットワーク構造の改善とトレーニング戦略に重点を置いている。
しかし、データ処理モジュールの役割は十分に解明されていない。
そこで本稿では,拡散モデルに基づくFSL問題の一般化データ処理モジュールであるMeta-DMを提案する。
Meta-DMはシンプルだが効果的なモジュールであり、既存のFSLメソッドと簡単に統合でき、教師なし設定と教師なし設定の両方で大幅なパフォーマンス向上をもたらす。
メタDMの理論解析を行い,その性能をいくつかのアルゴリズムで評価する。
実験の結果,Meta-DMと特定の手法を組み合わせることで,最先端の成果が得られることがわかった。
関連論文リスト
- Efficient and Effective Weight-Ensembling Mixture of Experts for Multi-Task Model Merging [111.8456671452411]
マルチタスク学習(MTL)は、共有モデルを利用して複数のタスクを遂行し、知識伝達を促進する。
マルチタスクモデル統合のためのウェイトエンセブリング・ミックス・オブ・エキスパート(WEMoE)手法を提案する。
WEMoEとE-WEMoEは, MTL性能, 一般化, 堅牢性の観点から, 最先端(SOTA)モデルマージ法より優れていることを示す。
論文 参考訳(メタデータ) (2024-10-29T07:16:31Z) - Utilizing Large Language Models for Event Deconstruction to Enhance Multimodal Aspect-Based Sentiment Analysis [2.1329326061804816]
本稿では,イベント分解のためのLarge Language Models (LLMs)を導入し,マルチモーダル・アスペクト・ベース・センチメント分析(MABSA-RL)のための強化学習フレームワークを提案する。
実験の結果,MABSA-RLは2つのベンチマークデータセットにおいて既存手法よりも優れていた。
論文 参考訳(メタデータ) (2024-10-18T03:40:45Z) - On-the-fly Modulation for Balanced Multimodal Learning [53.616094855778954]
マルチモーダル学習は、異なるモーダルからの情報を統合することでモデル性能を向上させることが期待されている。
広く使われている共同トレーニング戦略は、不均衡で最適化されていないユニモーダル表現につながる。
そこで本研究では,OGM(On-the-fly Prediction Modulation)とOGM(On-the-fly Gradient Modulation)の戦略を提案する。
論文 参考訳(メタデータ) (2024-10-15T13:15:50Z) - CoMMIT: Coordinated Instruction Tuning for Multimodal Large Language Models [68.64605538559312]
本稿では,MLLM命令のチューニングを理論的・経験的両面から解析する。
そこで本研究では,学習バランスを定量的に評価する尺度を提案する。
さらに,MLLMの生成分布の更新を促進する補助的損失正規化手法を提案する。
論文 参考訳(メタデータ) (2024-07-29T23:18:55Z) - MAML-en-LLM: Model Agnostic Meta-Training of LLMs for Improved In-Context Learning [43.512739869120125]
大規模言語モデル(LLM)のメタトレーニング手法であるMAML-en-LLMを提案する。
MAML-en-LLMは、解離したタスクでうまく機能するだけでなく、目に見えないタスクに適応する真の一般化可能なパラメータを学習することができる。
我々は、MAML-en-LLMが、目に見えないドメインと見えないドメインのトレーニングデータが少ない設定において、ベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2024-05-19T04:49:42Z) - MMA-DFER: MultiModal Adaptation of unimodal models for Dynamic Facial Expression Recognition in-the-wild [81.32127423981426]
実世界のアプリケーションでは,音声およびビデオデータに基づくマルチモーダル感情認識が重要である。
近年の手法は、強力なマルチモーダルエンコーダの事前学習に自己教師付き学習(SSL)の進歩を活用することに重点を置いている。
SSL-pre-trained disimodal encoders を用いて,この問題に対する異なる視点とマルチモーダル DFER の性能向上について検討する。
論文 参考訳(メタデータ) (2024-04-13T13:39:26Z) - MAMBA: an Effective World Model Approach for Meta-Reinforcement Learning [18.82398325614491]
本稿では,メタRL法とメタRL法の要素に基づくメタRLの新しいモデルベースアプローチを提案する。
本稿では,メタRLベンチマークドメインに対するアプローチの有効性を実証し,より優れたサンプル効率でより高いリターンが得られることを示す。
さらに,より困難な高次元領域のスレート上でのアプローチを検証し,実世界の一般化エージェントへの一歩を踏み出した。
論文 参考訳(メタデータ) (2024-03-14T20:40:36Z) - Take the Bull by the Horns: Hard Sample-Reweighted Continual Training
Improves LLM Generalization [165.98557106089777]
大きな言語モデル(LLM)の能力を高めることが大きな課題だ。
本研究は,従来の事前学習データセットを用いたLCMの光連続訓練に関する実証的戦略から始まった。
次に、この戦略をインスタンス重み付け分散ロバスト最適化の原則化されたフレームワークに定式化します。
論文 参考訳(メタデータ) (2024-02-22T04:10:57Z) - Model Composition for Multimodal Large Language Models [71.5729418523411]
本稿では,既存のMLLMのモデル構成による新しいパラダイムを提案する。
我々の基本的な実装であるNaiveMCは、モダリティエンコーダを再利用し、LLMパラメータをマージすることで、このパラダイムの有効性を実証する。
論文 参考訳(メタデータ) (2024-02-20T06:38:10Z) - Personalized Federated Learning with Contextual Modulation and
Meta-Learning [2.7716102039510564]
フェデレーション学習は、分散データソース上で機械学習モデルをトレーニングするための有望なアプローチとして登場した。
本稿では,フェデレートラーニングとメタラーニングを併用して,効率性と一般化能力を両立させる新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-23T08:18:22Z) - Multi-Domain Learning by Meta-Learning: Taking Optimal Steps in
Multi-Domain Loss Landscapes by Inner-Loop Learning [5.490618192331097]
マルチモーダルアプリケーションのためのマルチドメイン学習問題に対するモデル非依存の解法を考える。
我々の手法はモデルに依存しないため、追加のモデルパラメータやネットワークアーキテクチャの変更は不要である。
特に、ホワイトマター高輝度の自動セグメンテーションにおける医療画像のフィッティング問題に対するソリューションを実証します。
論文 参考訳(メタデータ) (2021-02-25T19:54:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。