論文の概要: The Structure and Dynamics of Knowledge Graphs, with Superficiality
- arxiv url: http://arxiv.org/abs/2305.08116v3
- Date: Fri, 31 May 2024 16:32:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-03 20:51:10.940539
- Title: The Structure and Dynamics of Knowledge Graphs, with Superficiality
- Title(参考訳): 超現実性を有する知識グラフの構造とダイナミクス
- Authors: Loïck Lhote, Béatrice Markhoff, Arnaud Soulet,
- Abstract要約: 本稿では,事実を独立に生成する関係の重なり合いを制御する,超現実性の概念を紹介する。
これは知識グラフの構造と力学の最初のモデルである。
- 参考スコア(独自算出の注目度): 0.016385815610837167
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large knowledge graphs combine human knowledge garnered from projects ranging from academia and institutions to enterprises and crowdsourcing. Within such graphs, each relationship between two nodes represents a basic fact involving these two entities. The diversity of the semantics of relationships constitutes the richness of knowledge graphs, leading to the emergence of singular topologies, sometimes chaotic in appearance. However, this complex characteristic can be modeled in a simple way by introducing the concept of superficiality, which controls the overlap between relationships whose facts are generated independently. With this model, superficiality also regulates the balance of the global distribution of knowledge by determining the proportion of misdescribed entities. This is the first model for the structure and dynamics of knowledge graphs. It leads to a better understanding of formal knowledge acquisition and organization.
- Abstract(参考訳): 大規模な知識グラフは、アカデミアや機関、企業、クラウドソーシングなど、さまざまなプロジェクトから得られた人間の知識を組み合わせている。
このようなグラフの中では、2つのノード間の関係は、これらの2つの実体を含む基本的な事実を表している。
関係性の意味論の多様性は知識グラフの豊かさを構成し、特異位相の出現に繋がる。
しかし、この複雑な特徴は、事実が独立して生成される関係の重複を制御する超現実性の概念を導入することで、単純な方法でモデル化することができる。
このモデルでは、超現実性は、誤って記述された実体の比率を決定することによって、知識のグローバルな分布のバランスを調節する。
これは知識グラフの構造と力学に関する最初のモデルである。
これは、正式な知識の獲得と組織に関する理解を深めます。
関連論文リスト
- Foundations and Frontiers of Graph Learning Theory [81.39078977407719]
グラフ学習の最近の進歩は、複雑な構造を持つデータを理解し分析する方法に革命をもたらした。
グラフニューラルネットワーク(GNN)、すなわちグラフ表現を学習するために設計されたニューラルネットワークアーキテクチャは、一般的なパラダイムとなっている。
本稿では,グラフ学習モデルに固有の近似と学習行動に関する理論的基礎とブレークスルーについて概説する。
論文 参考訳(メタデータ) (2024-07-03T14:07:41Z) - Federated Graph Semantic and Structural Learning [54.97668931176513]
本稿では,ノードレベルのセマンティクスとグラフレベルの構造の両方によって局所的なクライアントの歪みがもたらされることを示す。
構造的グラフニューラルネットワークは、固有の隣接関係のため、隣人に類似性を持っていると仮定する。
我々は、隣接関係を類似度分布に変換し、グローバルモデルを利用して関係知識を局所モデルに蒸留する。
論文 参考訳(メタデータ) (2024-06-27T07:08:28Z) - Accelerating Scientific Discovery with Generative Knowledge Extraction, Graph-Based Representation, and Multimodal Intelligent Graph Reasoning [0.0]
我々は1000の科学論文からなるデータセットを、オントロジ知識グラフに変換した。
我々はノード度を計算し、コミュニティと接続性を同定し、クラスタリング係数とピボットノード間の重心性を評価した。
グラフは本質的に無スケールの性質を持ち、高連結であり、グラフ推論に使用できる。
論文 参考訳(メタデータ) (2024-03-18T17:30:27Z) - Rule-Guided Joint Embedding Learning over Knowledge Graphs [6.831227021234669]
本稿では,コンテキスト情報とリテラル情報の両方を実体と関係埋め込みに組み込んだ新しいモデルを提案する。
文脈情報については,信頼度と関連度を指標として重要度を評価する。
2つの確立されたベンチマークデータセットに対して、徹底的な実験を行い、モデル性能を検証する。
論文 参考訳(メタデータ) (2023-12-01T19:58:31Z) - Self-organization Preserved Graph Structure Learning with Principle of
Relevant Information [72.83485174169027]
PRI-GSLは、自己組織化を特定し、隠された構造を明らかにするグラフ構造学習フレームワークである。
PRI-GSLは、フォン・ノイマンエントロピーと量子ジェンセン=シャノンの発散によって定量化された最も関連性が最も低い冗長な情報を含む構造を学ぶ。
論文 参考訳(メタデータ) (2022-12-30T16:02:02Z) - Learning Representations of Entities and Relations [0.0]
この論文は,リンク予測タスクに取り組むことを目的とした知識グラフ表現の改善に焦点を当てている。
最初のコントリビューションはHypERであり、リンク予測性能を単純化し改善する畳み込みモデルである。
第2のコントリビューションは比較的単純な線形モデルであるTuckERで、このモデルが導入された時点では、最先端のリンク予測性能が得られた。
第3の貢献は、双曲空間に埋め込まれた最初のマルチリレーショナルグラフ表現モデルである MuRP である。
論文 参考訳(メタデータ) (2022-01-31T09:24:43Z) - Is There More Pattern in Knowledge Graph? Exploring Proximity Pattern
for Knowledge Graph Embedding [13.17623081024394]
知識グラフにおけるそのような意味現象を近接パターンと呼ぶ。
元の知識グラフを用いて、我々は2つのパターンを深くマージするために、連鎖したcouPle-GNNアーキテクチャを設計する。
FB15k-237とWN18RRデータセットで評価され、CP-GNNは知識グラフ補完タスクの最先端の結果を達成する。
論文 参考訳(メタデータ) (2021-10-02T03:50:42Z) - Compositional Processing Emerges in Neural Networks Solving Math
Problems [100.80518350845668]
人工知能の最近の進歩は、大きなモデルが十分な言語データに基づいて訓練されると、文法構造が表現に現れることを示している。
我々は、この研究を数学的推論の領域にまで拡張し、どのように意味を構成するべきかについての正確な仮説を定式化することができる。
私たちの研究は、ニューラルネットワークがトレーニングデータに暗黙的に構造化された関係について何かを推測できるだけでなく、個々の意味の合成を合成全体へと導くために、この知識を展開できることを示している。
論文 参考訳(メタデータ) (2021-05-19T07:24:42Z) - Structural Landmarking and Interaction Modelling: on Resolution Dilemmas
in Graph Classification [50.83222170524406]
解法ジレンマの統一概念に基づくグラフ分類における本質的難易度の研究」
構造ランドマークと相互作用モデリングのためのインダクティブニューラルネットワークモデルSLIM'を提案する。
論文 参考訳(メタデータ) (2020-06-29T01:01:42Z) - Neural-Symbolic Relational Reasoning on Graph Models: Effective Link
Inference and Computation from Knowledge Bases [0.5669790037378094]
モデルにそのような経路を含む知識グラフの最小限のネットワークを埋め込むことにより、すべての経路を学習するニューラルネットワークのシンボリックグラフを提案する。
単語の埋め込みに対応する実体と事実の表現を学習することにより、モデルをエンドツーエンドでトレーニングし、それらの表現をデコードし、関係性アプローチでエンティティ間の関係を推論する方法を示す。
論文 参考訳(メタデータ) (2020-05-05T22:46:39Z) - A Heterogeneous Graph with Factual, Temporal and Logical Knowledge for
Question Answering Over Dynamic Contexts [81.4757750425247]
動的テキスト環境における質問応答について検討する。
構築したグラフ上にグラフニューラルネットワークを構築し,エンドツーエンドでモデルをトレーニングする。
論文 参考訳(メタデータ) (2020-04-25T04:53:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。