Quantum Scar States in Coupled Random Graph Models
- URL: http://arxiv.org/abs/2305.08123v2
- Date: Thu, 15 Jun 2023 08:30:47 GMT
- Title: Quantum Scar States in Coupled Random Graph Models
- Authors: Bhilahari Jeevanesan
- Abstract summary: We analyze the Hilbert space connectivity of the $L$ site PXP-model by constructing the Hamiltonian matrices via a Gray code numbering of basis states.
We study the entanglement structure of their energy eigenstates and find two classes of weakly-entangled mid-spectrum states.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We analyze the Hilbert space connectivity of the $L$ site PXP-model by
constructing the Hamiltonian matrices via a Gray code numbering of basis
states. The matrices are all formed out of a single Hamiltonian-path backbone
and entries on skew-diagonals. Starting from this observation, we construct an
ensemble of related Hamiltonians based on random graphs with tunable constraint
degree and variable network topology. We study the entanglement structure of
their energy eigenstates and find two classes of weakly-entangled mid-spectrum
states. The first class contains scars that are approximate products of
eigenstates of the subsystems. Their origin can be traced to the
near-orthogonality of random vectors in high-dimensional spaces. The second
class of scars has $\log 2$ entanglement entropy and is tied to the occurrence
of special types of subgraphs. The latter states have some resemblance to the
Lin-Motrunich $\sqrt{2}$-scars.
Related papers
- Lindbladian reverse engineering for general non-equilibrium steady states: A scalable null-space approach [49.1574468325115]
We introduce a method for reconstructing the corresponding Lindbaldian master equation given any target NESS.
The kernel (null-space) of the correlation matrix corresponds to Lindbladian solutions.
We illustrate the method in different systems, ranging from bosonic Gaussian to dissipative-driven collective spins.
arXiv Detail & Related papers (2024-08-09T19:00:18Z) - Efficient conversion from fermionic Gaussian states to matrix product states [48.225436651971805]
We propose a highly efficient algorithm that converts fermionic Gaussian states to matrix product states.
It can be formulated for finite-size systems without translation invariance, but becomes particularly appealing when applied to infinite systems.
The potential of our method is demonstrated by numerical calculations in two chiral spin liquids.
arXiv Detail & Related papers (2024-08-02T10:15:26Z) - Predicting Ground State Properties: Constant Sample Complexity and Deep Learning Algorithms [48.869199703062606]
A fundamental problem in quantum many-body physics is that of finding ground states of local Hamiltonians.
We introduce two approaches that achieve a constant sample complexity, independent of system size $n$, for learning ground state properties.
arXiv Detail & Related papers (2024-05-28T18:00:32Z) - Quantum Chaos on Edge [36.136619420474766]
We identify two different classes: the near edge physics of sparse'' and the near edge of dense'' chaotic systems.
The distinction lies in the ratio between the number of a system's random parameters and its Hilbert space dimension.
While the two families share identical spectral correlations at energy scales comparable to the level spacing, the density of states and its fluctuations near the edge are different.
arXiv Detail & Related papers (2024-03-20T11:31:51Z) - Classification of dynamical Lie algebras for translation-invariant
2-local spin systems in one dimension [44.41126861546141]
We provide a classification of Lie algebras generated by translation-invariant 2-local spin chain Hamiltonians.
We consider chains with open and periodic boundary conditions and find 17 unique dynamical Lie algebras.
In addition to the closed and open spin chains, we consider systems with a fully connected topology, which may be relevant for quantum machine learning approaches.
arXiv Detail & Related papers (2023-09-11T17:59:41Z) - Local topological order and boundary algebras [0.0]
We introduce axioms for locally topologically ordered quantum spin systems in terms of nets of local ground state projections.
For a locally topologically ordered spin system on $mathbbZk$, we define a local net of boundary algebras on $mathbbZk-1$.
We construct a canonical quantum channel so that states on the boundary quasi-local algebra parameterize bulk-boundary states without reference to a boundary Hamiltonian.
arXiv Detail & Related papers (2023-07-24T06:38:48Z) - Vectorization of the density matrix and quantum simulation of the von
Neumann equation of time-dependent Hamiltonians [65.268245109828]
We develop a general framework to linearize the von-Neumann equation rendering it in a suitable form for quantum simulations.
We show that one of these linearizations of the von-Neumann equation corresponds to the standard case in which the state vector becomes the column stacked elements of the density matrix.
A quantum algorithm to simulate the dynamics of the density matrix is proposed.
arXiv Detail & Related papers (2023-06-14T23:08:51Z) - Three-dimensional quantum cellular automata from chiral semion surface
topological order and beyond [2.554567149842799]
We construct a novel three-dimensional quantum cellular automaton (QCA) based on a system with short-range entangled bulk and chiral semion boundary topological order.
We show that the resulting Hamiltonian hosts chiral semion surface topological order in the presence of a boundary and can be realized as a non-Pauli stabilizer code on qubits.
arXiv Detail & Related papers (2022-02-11T04:41:37Z) - Entanglement of Free Fermions on Hamming Graphs [0.0]
It is shown how to construct a block-tridiagonal operator which commutes with the entanglement Hamiltonian.
It is identified as a BC-Gaudin magnet Hamiltonian in a magnetic field and is diagonalized by the modified algebraic Bethe ansatz.
arXiv Detail & Related papers (2021-03-29T16:28:00Z) - Frustration-free Hamiltonian with Topological Order on Graphs [1.933681537640272]
It is commonly believed that models defined on a closed one-dimensional manifold cannot give rise to topological order.
Here we construct frustration-free Hamiltonians which possess both symmetry protected topological order (SPT) and multiple ground state degeneracy (GSD)
Instead of global symmetry breaking, there exists a it local symmetry operator that commutes with the Hamiltonian and connects the multiple ground states.
arXiv Detail & Related papers (2020-12-09T09:19:27Z) - Non-Hermitian N-state degeneracies: unitary realizations via
antisymmetric anharmonicities [0.0]
degeneracy of an $N-$plet of bound states is studied in the framework of quantum theory of closed (i.e., unitary) systems.
For an underlying Hamiltonian $H=H(lambda)$ the degeneracy occurs at a Kato's exceptional point.
arXiv Detail & Related papers (2020-10-28T14:41:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.