論文の概要: MaxViT-UNet: Multi-Axis Attention for Medical Image Segmentation
- arxiv url: http://arxiv.org/abs/2305.08396v5
- Date: Fri, 29 Mar 2024 12:50:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-01 20:56:17.076622
- Title: MaxViT-UNet: Multi-Axis Attention for Medical Image Segmentation
- Title(参考訳): MaxViT-UNet:医療画像セグメンテーションのためのマルチ軸アテンション
- Authors: Abdul Rehman Khan, Asifullah Khan,
- Abstract要約: MaxViT-UNetは医療画像セグメンテーションのためのハイブリッドビジョントランス (CNN-Transformer) である。
提案するハイブリッドデコーダは,各復号段階における畳み込み機構と自己保持機構の両方のパワーを利用するように設計されている。
復号器の各段階における多軸自己アテンションの包含は、対象領域と背景領域の識別能力を大幅に向上させる。
- 参考スコア(独自算出の注目度): 0.46040036610482665
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Since their emergence, Convolutional Neural Networks (CNNs) have made significant strides in medical image analysis. However, the local nature of the convolution operator may pose a limitation for capturing global and long-range interactions in CNNs. Recently, Transformers have gained popularity in the computer vision community and also in medical image segmentation due to their ability to process global features effectively. The scalability issues of the self-attention mechanism and lack of the CNN-like inductive bias may have limited their adoption. Therefore, hybrid Vision transformers (CNN-Transformer), exploiting the advantages of both Convolution and Self-attention Mechanisms, have gained importance. In this work, we present MaxViT-UNet, a new Encoder-Decoder based UNet type hybrid vision transformer (CNN-Transformer) for medical image segmentation. The proposed Hybrid Decoder is designed to harness the power of both the convolution and self-attention mechanisms at each decoding stage with a nominal memory and computational burden. The inclusion of multi-axis self-attention, within each decoder stage, significantly enhances the discriminating capacity between the object and background regions, thereby helping in improving the segmentation efficiency. In the Hybrid Decoder, a new block is also proposed. The fusion process commences by integrating the upsampled lower-level decoder features, obtained through transpose convolution, with the skip-connection features derived from the hybrid encoder. Subsequently, the fused features undergo refinement through the utilization of a multi-axis attention mechanism. The proposed decoder block is repeated multiple times to segment the nuclei regions progressively. Experimental results on MoNuSeg18 and MoNuSAC20 datasets demonstrate the effectiveness of the proposed technique.
- Abstract(参考訳): その出現以来、畳み込みニューラルネットワーク(CNN)は医療画像解析において大きな進歩を遂げてきた。
しかし、畳み込み作用素の局所的な性質は、CNNにおける大域的および長距離的相互作用を捉える限界を生じさせる可能性がある。
近年、トランスフォーマーは、コンピュータビジョンコミュニティや医療画像のセグメンテーションにおいて、グローバルな特徴を効果的に処理できることから人気を集めている。
自己注意機構のスケーラビリティの問題とCNNのような帰納バイアスの欠如は、採用を制限した可能性がある。
そのため、畳み込みと自己注意機構の両方の利点を生かしたハイブリッドビジョントランス (CNN-Transformer) が重要になっている。
本研究では,医療画像セグメンテーションのための新しいエンコーダ-デコーダベースUNet型ハイブリッドビジョントランス (CNN-Transformer) であるMaxViT-UNetを紹介する。
提案するハイブリッドデコーダは,各デコードステージにおける畳み込み機構と自己保持機構の両方のパワーを,名目記憶と計算負荷で活用するように設計されている。
復号器の各段階における多軸自己アテンションの導入は、対象領域と背景領域の識別能力を大幅に向上させ、セグメンテーション効率の向上に寄与する。
ハイブリッドデコーダでは、新しいブロックも提案されている。
融合プロセスは、変換畳み込みにより得られたアップサンプリングされた低レベルデコーダ特徴とハイブリッドエンコーダから導出されるスキップ接続特徴とを一体化して開始する。
その後、多軸アテンション機構の利用により、融合した特徴が洗練される。
提案したデコーダブロックは数回繰り返して核領域を段階的に分割する。
MoNuSeg18とMoNuSAC20データセットの実験結果から,提案手法の有効性が示された。
関連論文リスト
- ASSNet: Adaptive Semantic Segmentation Network for Microtumors and Multi-Organ Segmentation [32.74195208408193]
医用画像のセグメンテーションは、コンピュータビジョンにおいて重要な課題であり、診断、治療計画、疾患モニタリングにおける臨床医を支援する。
本稿では,局所的特徴とグローバルな特徴を効果的に統合し,正確な医用画像分割を実現するトランスフォーマアーキテクチャである適応意味ネットワーク(ASSNet)を提案する。
多臓器、肝腫瘍、膀胱腫瘍の分節を含む様々な医療画像の分節タスクに関するテストは、ATSNetが最先端の結果を達成することを実証している。
論文 参考訳(メタデータ) (2024-09-12T06:25:44Z) - Prototype Learning Guided Hybrid Network for Breast Tumor Segmentation in DCE-MRI [58.809276442508256]
本稿では,畳み込みニューラルネットワーク(CNN)とトランスフォーマー層を組み合わせたハイブリッドネットワークを提案する。
プライベートおよびパブリックなDCE-MRIデータセットの実験結果から,提案したハイブリッドネットワークは最先端の手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2024-08-11T15:46:00Z) - Rethinking Attention Gated with Hybrid Dual Pyramid Transformer-CNN for Generalized Segmentation in Medical Imaging [17.07490339960335]
本稿では,強力なCNN-Transformerエンコーダを効率的に構築するためのハイブリッドCNN-Transformerセグメンテーションアーキテクチャ(PAG-TransYnet)を提案する。
我々のアプローチは、デュアルピラミッドハイブリッドエンコーダ内のアテンションゲートを利用する。
論文 参考訳(メタデータ) (2024-04-28T14:37:10Z) - MIST: Medical Image Segmentation Transformer with Convolutional
Attention Mixing (CAM) Decoder [0.0]
本稿では,CAMデコーダを組み込んだ医用画像変換器(MIST)を提案する。
MISTには2つの部分がある: 事前訓練された多軸視覚変換器(MaxViT)をエンコーダとして使用し、符号化された特徴表現をCAMデコーダに渡して画像のセグメンテーションを行う。
空間情報ゲインを高めるため、特徴抽出及び受容野拡大に深部及び浅部畳み込みを用いる。
論文 参考訳(メタデータ) (2023-10-30T18:07:57Z) - Cross-receptive Focused Inference Network for Lightweight Image
Super-Resolution [64.25751738088015]
トランスフォーマーに基づく手法は、単一画像超解像(SISR)タスクにおいて顕著な性能を示した。
動的に特徴を抽出するために文脈情報を組み込む必要がある変換器は無視される。
我々は,CNNとTransformerを混合したCTブロックのカスケードで構成される,軽量なクロスレセプティブ・フォーカスド・推論・ネットワーク(CFIN)を提案する。
論文 参考訳(メタデータ) (2022-07-06T16:32:29Z) - MISSU: 3D Medical Image Segmentation via Self-distilling TransUNet [55.16833099336073]
医用画像セグメンテーションのためのトランスフォーマーベースUNetを提案する。
グローバルな意味情報と局所的な空間的詳細特徴を同時に学習する。
MISSUは従来の最先端手法よりも優れた性能を発揮する。
論文 参考訳(メタデータ) (2022-06-02T07:38:53Z) - UTNet: A Hybrid Transformer Architecture for Medical Image Segmentation [6.646135062704341]
トランスフォーマーアーキテクチャは多くの自然言語処理タスクで成功している。
医用画像セグメンテーションを強化するために,自己意識を畳み込みニューラルネットワークに統合する強力なハイブリッドトランスフォーマーアーキテクチャUTNetを提案する。
論文 参考訳(メタデータ) (2021-07-02T00:56:27Z) - Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation [63.46694853953092]
Swin-Unetは、医用画像セグメンテーション用のUnetライクなトランスフォーマーである。
トークン化されたイメージパッチは、TransformerベースのU字型デコーダデコーダアーキテクチャに供給される。
論文 参考訳(メタデータ) (2021-05-12T09:30:26Z) - CoTr: Efficiently Bridging CNN and Transformer for 3D Medical Image
Segmentation [95.51455777713092]
畳み込みニューラルネットワーク(CNN)は、現代の3D医療画像セグメンテーションのデファクトスタンダードとなっている。
本稿では,bf畳み込みニューラルネットワークとbfトランスbf(cotr)を効率良く橋渡しし,正確な3次元医用画像分割を実現する新しい枠組みを提案する。
論文 参考訳(メタデータ) (2021-03-04T13:34:22Z) - TransUNet: Transformers Make Strong Encoders for Medical Image
Segmentation [78.01570371790669]
医用画像のセグメンテーションは医療システムの開発に必須の前提条件である。
様々な医療画像セグメンテーションタスクにおいて、U-Netとして知られるu字型アーキテクチャがデファクトスタンダードとなっている。
医用画像セグメンテーションの強力な代替手段として,トランスフォーマーとU-Netの両方を有効活用するTransUNetを提案する。
論文 参考訳(メタデータ) (2021-02-08T16:10:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。