Synthetic $\mathbb{Z}_2$ gauge theories based on parametric excitations of trapped ions
- URL: http://arxiv.org/abs/2305.08700v3
- Date: Fri, 29 Nov 2024 16:56:30 GMT
- Title: Synthetic $\mathbb{Z}_2$ gauge theories based on parametric excitations of trapped ions
- Authors: O. Băzăvan, S. Saner, E. Tirrito, G. Araneda, R. Srinivas, A. Bermudez,
- Abstract summary: We present a detailed scheme for the analog quantum simulation of $mathbbZ$ gauge theories in crystals of trapped ions.
We exploit a more efficient hybrid encoding of the gauge and matter fields using the native internal and motional degrees of freedom.
- Score: 0.0
- License:
- Abstract: We present a detailed scheme for the analog quantum simulation of $\mathbb{Z}_2$ gauge theories in crystals of trapped ions, which exploits a more efficient hybrid encoding of the gauge and matter fields using the native internal and motional degrees of freedom. We introduce a versatile toolbox based on parametric excitations corresponding to different spin-motion-coupling schemes that induce a tunneling of the ions vibrational excitations conditioned to their internal qubit state. This building block, when implemented with a single trapped ion, corresponds to a minimal $\mathbb{Z}_2$ gauge theory, where the qubit plays the role of the gauge field on a synthetic link, and the vibrational excitations along different trap axes mimic the dynamical matter fields two synthetic sites, each carrying a $\mathbb{Z}_2$ charge. To evaluate their feasibility, we perform numerical simulations of the state-dependent tunneling using realistic parameters, and identify the leading sources of error in future experiments. We discuss how to generalise this minimal case to more complex settings by increasing the number of ions, moving from a single link to a $\mathbb{Z}_2$ plaquette, and to an entire $\mathbb{Z}_2$ chain. We present analytical expressions for the gauge-invariant dynamics and the corresponding confinement, which are benchmarked using matrix product state simulations.
Related papers
- Dynamical Aharonov-Bohm cages and tight meson confinement in a $\mathbb{Z}_2$-loop gauge theory [44.99833362998488]
We study the finite-density phases of a $mathbbZ$ lattice gauge theory (LGT) of interconnected loops and dynamical $mathbbZ$ charges.
arXiv Detail & Related papers (2024-12-17T00:26:24Z) - Entanglement and the density matrix renormalisation group in the generalised Landau paradigm [0.0]
We leverage the interplay between gapped phases and dualities of symmetric one-dimensional quantum lattice models.
For every phase in the phase diagram, the dual representation of the ground state that breaks all symmetries minimises both the entanglement entropy and the required number of variational parameters.
Our work testifies to the usefulness of generalised non-invertible symmetries and their formal category theoretic description for the nuts and bolts simulation of strongly correlated systems.
arXiv Detail & Related papers (2024-08-12T17:51:00Z) - A Floquet-Rydberg quantum simulator for confinement in $\mathbb{Z}_2$
gauge theories [44.99833362998488]
Recent advances in the field of quantum technologies have opened up the road for the realization of small-scale quantum simulators.
We present a scalable Floquet scheme for the quantum simulation of the real-time dynamics in a $mathbbZ$ LGT.
We show that an observation of gauge-invariant confinement dynamics in the Floquet-Rydberg setup is at reach of current experimental techniques.
arXiv Detail & Related papers (2023-11-28T13:01:24Z) - $\mathbb{Z}_N$ lattice gauge theories with matter fields [0.0]
We study fermions and bosons in $mathbb Z_N$ lattice gauge theories.
We present analytical arguments for the most important phases and estimates for phase boundaries of the model.
arXiv Detail & Related papers (2023-08-24T21:05:15Z) - Quantum Electronic Circuits for Multicritical Ising Models [0.0]
Multicritical Ising models and their perturbations are paradigmatic models of statistical mechanics.
Quantum circuits are constructed with Josephson junctions with $cos(nphi + delta_n)$ potential with $1leq nleq p$ and $delta_nin[-pi,pi]$.
The lattice models for the Ising and tricritical Ising models are analyzed numerically using the density matrix renormalization group technique.
arXiv Detail & Related papers (2023-06-07T11:24:43Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Modeling the space-time correlation of pulsed twin beams [68.8204255655161]
Entangled twin-beams generated by parametric down-conversion are among the favorite sources for imaging-oriented applications.
We propose a semi-analytic model which aims to bridge the gap between time-consuming numerical simulations and the unrealistic plane-wave pump theory.
arXiv Detail & Related papers (2023-01-18T11:29:49Z) - $Ab\,initio$ derivation of lattice gauge theory dynamics for cold gases
in optical lattices [0.0]
We introduce a method for quantum simulation of U$(1)$ lattice gauge theories coupled to matter, utilizing alkaline-earth(-like) atoms in state-dependent optical lattices.
We focus on a realistic and robust implementation that utilizes the long-lived metastable clock state available in alkaline-earth(-like) atomic species.
arXiv Detail & Related papers (2023-01-09T16:09:08Z) - Realistic scheme for quantum simulation of $\mathbb{Z}_2$ lattice gauge
theories with dynamical matter in $(2+1)$D [0.0]
We propose a realistic scheme for Rydberg atom array experiments in which a $mathbbZ$ gauge structure with dynamical charges emerges on experimentally relevant timescales.
We discuss ground-state phase diagrams of the experimentally most effective $mathbbZ$ lattice gauge theories with dynamical matter.
We present selected probes with immediate relevance, including signatures of disorder-free localization and a thermal deconfinement transition of two charges.
arXiv Detail & Related papers (2022-05-17T18:00:00Z) - Hybridized Methods for Quantum Simulation in the Interaction Picture [69.02115180674885]
We provide a framework that allows different simulation methods to be hybridized and thereby improve performance for interaction picture simulations.
Physical applications of these hybridized methods yield a gate complexity scaling as $log2 Lambda$ in the electric cutoff.
For the general problem of Hamiltonian simulation subject to dynamical constraints, these methods yield a query complexity independent of the penalty parameter $lambda$ used to impose an energy cost.
arXiv Detail & Related papers (2021-09-07T20:01:22Z) - Quantum Algorithms for Simulating the Lattice Schwinger Model [63.18141027763459]
We give scalable, explicit digital quantum algorithms to simulate the lattice Schwinger model in both NISQ and fault-tolerant settings.
In lattice units, we find a Schwinger model on $N/2$ physical sites with coupling constant $x-1/2$ and electric field cutoff $x-1/2Lambda$.
We estimate observables which we cost in both the NISQ and fault-tolerant settings by assuming a simple target observable---the mean pair density.
arXiv Detail & Related papers (2020-02-25T19:18:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.