論文の概要: Survey of Malware Analysis through Control Flow Graph using Machine
Learning
- arxiv url: http://arxiv.org/abs/2305.08993v1
- Date: Mon, 15 May 2023 20:18:27 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-17 17:10:19.706316
- Title: Survey of Malware Analysis through Control Flow Graph using Machine
Learning
- Title(参考訳): 機械学習を用いた制御フローグラフによるマルウェア解析
- Authors: Shaswata Mitra, Stephen A. Torri, Sudip Mittal
- Abstract要約: 従来のシグネチャベースのマルウェア検出手法は、新しく未知のマルウェアを検出するのに効果がない。
シグネチャベースの検出の限界を克服できる最も有望な手法の1つは、制御フローグラフ(CFG)を使用することである。
CFGはプログラムの構造情報を利用して実行可能なパスをグラフとして表現し、ノードは命令を表し、エッジは制御フロー依存性を表す。
機械学習(ML)アルゴリズムは、CFGからこれらの機能を抽出し、悪意のあるものまたは良心的なものとして分類するために使用されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Malware is a significant threat to the security of computer systems and
networks which requires sophisticated techniques to analyze the behavior and
functionality for detection. Traditional signature-based malware detection
methods have become ineffective in detecting new and unknown malware due to
their rapid evolution. One of the most promising techniques that can overcome
the limitations of signature-based detection is to use control flow graphs
(CFGs). CFGs leverage the structural information of a program to represent the
possible paths of execution as a graph, where nodes represent instructions and
edges represent control flow dependencies. Machine learning (ML) algorithms are
being used to extract these features from CFGs and classify them as malicious
or benign. In this survey, we aim to review some state-of-the-art methods for
malware detection through CFGs using ML, focusing on the different ways of
extracting, representing, and classifying. Specifically, we present a
comprehensive overview of different types of CFG features that have been used
as well as different ML algorithms that have been applied to CFG-based malware
detection. We provide an in-depth analysis of the challenges and limitations of
these approaches, as well as suggest potential solutions to address some open
problems and promising future directions for research in this field.
- Abstract(参考訳): マルウェアはコンピュータシステムやネットワークのセキュリティにとって重大な脅威であり、検出の動作と機能を分析するための高度な技術を必要とする。
従来のシグネチャベースのマルウェア検出手法は、その急速な進化により、新しく未知のマルウェアを検出するのに効果がない。
シグネチャベースの検出の限界を克服できる最も有望なテクニックの1つは、制御フローグラフ(CFG)を使用することである。
CFGはプログラムの構造情報を利用して実行可能なパスをグラフとして表現し、ノードは命令を表し、エッジは制御フロー依存性を表す。
機械学習(ml)アルゴリズムは、これらの機能をcfgsから抽出し、それらを悪意または良性として分類するために使用されている。
本研究では,mlを用いたcfgsによるマルウェア検出手法について検討し,その抽出方法,表現方法,分類方法の相違に着目した。
具体的には,cfg ベースのマルウェア検出に適用された異なる ml アルゴリズムと同様に,これまで使用されてきた cfg 機能の種類を包括的に概観する。
我々は、これらのアプローチの課題と限界を詳細に分析するとともに、オープンな問題に対処する潜在的な解決策を提案し、この分野の研究の今後の方向性を約束する。
関連論文リスト
- A Novel Approach to Malicious Code Detection Using CNN-BiLSTM and Feature Fusion [2.3039261241391586]
本研究では,マルウェアのバイナリファイルをグレースケールのイメージに変換するためにminhashアルゴリズムを用いる。
この研究は、IDA Proを用いてオペコードシーケンスをデコンパイルし、抽出し、特徴ベクトル化にN-gramとtf-idfアルゴリズムを適用した。
CNN-BiLSTM融合モデルは、画像の特徴とオプコードシーケンスを同時に処理し、分類性能を向上させるように設計されている。
論文 参考訳(メタデータ) (2024-10-12T07:10:44Z) - Comprehensive evaluation of Mal-API-2019 dataset by machine learning in malware detection [0.5475886285082937]
本研究では,機械学習技術を用いたマルウェア検出の徹底的な検討を行う。
その目的は、脅威をより効果的に識別し緩和することで、サイバーセキュリティの能力を向上させることである。
論文 参考訳(メタデータ) (2024-03-04T17:22:43Z) - Analyzing Adversarial Inputs in Deep Reinforcement Learning [53.3760591018817]
本稿では, 正当性検証のレンズを用いて, 逆入力の特性を包括的に解析する。
このような摂動に対する感受性に基づいてモデルを分類するために、新しい計量である逆数率(Adversarial Rate)を導入する。
本分析は, 直交入力が所定のDRLシステムの安全性にどのように影響するかを実証的に示す。
論文 参考訳(メタデータ) (2024-02-07T21:58:40Z) - Discovering Malicious Signatures in Software from Structural
Interactions [7.06449725392051]
本稿では,ディープラーニング,数学的手法,ネットワーク科学を活用する新しいマルウェア検出手法を提案する。
提案手法は静的および動的解析に焦点をあて,LLVM(Lower-Level Virtual Machine)を用いて複雑なネットワーク内のアプリケーションをプロファイリングする。
弊社のアプローチは、マルウェアの検出を大幅に改善し、より正確で効率的なソリューションを提供する。
論文 参考訳(メタデータ) (2023-12-19T23:42:20Z) - A Survey on Malware Detection with Graph Representation Learning [0.0]
マルウェアの検出は、マルウェアの数と複雑さの増大により、大きな関心事となっている。
近年、機械学習(ML)、特にディープラーニング(DL)は、データから有用な表現を学習することで、マルウェア検出において印象的な成果を上げている。
本稿は、共通アプローチとアーキテクチャの下で既存の作品を要約し、統一するための詳細な文献レビューを提供する。
論文 参考訳(メタデータ) (2023-03-28T14:27:08Z) - Harnessing the Speed and Accuracy of Machine Learning to Advance Cybersecurity [0.0]
従来のシグネチャベースのマルウェア検出方法は、複雑な脅威を検出するのに制限がある。
近年、機械学習はマルウェアを効果的に検出する有望なソリューションとして出現している。
MLアルゴリズムは、大規模なデータセットを分析し、人間が識別するのが困難なパターンを特定することができる。
論文 参考訳(メタデータ) (2023-02-24T02:42:38Z) - Metrics reloaded: Recommendations for image analysis validation [59.60445111432934]
メトリクスのリロード(Metrics Reloaded)は、メトリクスの問題を意識した選択において研究者を導く包括的なフレームワークである。
このフレームワークは多段階のDelphiプロセスで開発され、問題指紋という新しい概念に基づいている。
問題指紋に基づいて、ユーザは適切なバリデーションメトリクスを選択して適用するプロセスを通じてガイドされる。
論文 参考訳(メタデータ) (2022-06-03T15:56:51Z) - Software Vulnerability Detection via Deep Learning over Disaggregated
Code Graph Representation [57.92972327649165]
この研究は、コードコーパスから安全でないパターンを自動的に学習するためのディープラーニングアプローチを探求する。
コードには解析を伴うグラフ構造が自然に認められるため,プログラムの意味的文脈と構造的規則性の両方を利用する新しいグラフニューラルネットワーク(GNN)を開発する。
論文 参考訳(メタデータ) (2021-09-07T21:24:36Z) - Practical Machine Learning Safety: A Survey and Primer [81.73857913779534]
自動運転車のような安全クリティカルなアプリケーションにおける機械学習アルゴリズムのオープンワールド展開は、さまざまなML脆弱性に対処する必要がある。
一般化エラーを低減し、ドメイン適応を実現し、外乱例や敵攻撃を検出するための新しいモデルと訓練技術。
我々の組織は、MLアルゴリズムの信頼性を異なる側面から向上するために、最先端のML技術を安全戦略にマッピングする。
論文 参考訳(メタデータ) (2021-06-09T05:56:42Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
本稿では,ベイズ最適化手法を用いた効果的な異常検出フレームワークを提案する。
ISCX 2012データセットを用いて検討したアルゴリズムの性能を評価する。
実験結果から, 精度, 精度, 低コストアラームレート, リコールの観点から, 提案手法の有効性が示された。
論文 参考訳(メタデータ) (2020-08-05T19:29:35Z) - Survey of Network Intrusion Detection Methods from the Perspective of
the Knowledge Discovery in Databases Process [63.75363908696257]
本稿では,侵入検知器の開発を目的として,ネットワークデータに適用された手法について概説する。
本稿では,データのキャプチャ,準備,変換,データマイニング,評価などの手法について論じる。
この文献レビューの結果、ネットワークセキュリティ分野のさらなる研究のために考慮すべきいくつかのオープンな問題について検討する。
論文 参考訳(メタデータ) (2020-01-27T11:21:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。