Learning Linear Embeddings for Non-Linear Network Dynamics with Koopman
Message Passing
- URL: http://arxiv.org/abs/2305.09060v1
- Date: Mon, 15 May 2023 23:00:25 GMT
- Title: Learning Linear Embeddings for Non-Linear Network Dynamics with Koopman
Message Passing
- Authors: King Fai Yeh, Paris Flood, William Redman, and Pietro Li\`o
- Abstract summary: We present a novel approach based on Koopman operator theory and message passing networks.
We find a linear representation for the dynamical system which is globally valid at any time step.
The linearisations found by our method produce predictions on a suite of network dynamics problems that are several orders of magnitude better than current state-of-the-art techniques.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, Koopman operator theory has become a powerful tool for developing
linear representations of non-linear dynamical systems. However, existing
data-driven applications of Koopman operator theory, including both traditional
and deep learning approaches, perform poorly on non-linear network dynamics
problems as they do not address the underlying geometric structure. In this
paper we present a novel approach based on Koopman operator theory and message
passing networks that finds a linear representation for the dynamical system
which is globally valid at any time step. The linearisations found by our
method produce predictions on a suite of network dynamics problems that are
several orders of magnitude better than current state-of-the-art techniques. We
also apply our approach to the highly non-linear training dynamics of neural
network architectures, and obtain linear representations which can generate
network parameters with comparable performance to networks trained by classical
optimisers.
Related papers
- Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
We present Mechanistic Neural Networks, a neural network design for machine learning applications in the sciences.
It incorporates a new Mechanistic Block in standard architectures to explicitly learn governing differential equations as representations.
Central to our approach is a novel Relaxed Linear Programming solver (NeuRLP) inspired by a technique that reduces solving linear ODEs to solving linear programs.
arXiv Detail & Related papers (2024-02-20T15:23:24Z) - Identifying Equivalent Training Dynamics [3.793387630509845]
We develop a framework for identifying conjugate and non-conjugate training dynamics.
By leveraging advances in Koopman operator theory, we demonstrate that comparing Koopman eigenvalues can correctly identify a known equivalence between online mirror descent and online gradient descent.
We then utilize our approach to: (a) identify non-conjugate training dynamics between shallow and wide fully connected neural networks; (b) characterize the early phase of training dynamics in convolutional neural networks; (c) uncover non-conjugate training dynamics in Transformers that do and do not undergo grokking.
arXiv Detail & Related papers (2023-02-17T22:15:20Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
Modern dynamical systems are becoming increasingly non-linear and complex.
There is a need for a framework to model these systems in a compact and comprehensive representation for prediction and control.
Our approach learns these basis functions using a supervised learning approach.
arXiv Detail & Related papers (2021-09-06T04:39:06Z) - A purely data-driven framework for prediction, optimization, and control
of networked processes: application to networked SIS epidemic model [0.8287206589886881]
We develop a data-driven framework based on operator-theoretic techniques to identify and control nonlinear dynamics over large-scale networks.
The proposed approach requires no prior knowledge of the network structure and identifies the underlying dynamics solely using a collection of two-step snapshots of the states.
arXiv Detail & Related papers (2021-08-01T03:57:10Z) - What can linearized neural networks actually say about generalization? [67.83999394554621]
In certain infinitely-wide neural networks, the neural tangent kernel (NTK) theory fully characterizes generalization.
We show that the linear approximations can indeed rank the learning complexity of certain tasks for neural networks.
Our work provides concrete examples of novel deep learning phenomena which can inspire future theoretical research.
arXiv Detail & Related papers (2021-06-12T13:05:11Z) - Modern Koopman Theory for Dynamical Systems [2.5889588665122725]
We provide an overview of modern Koopman operator theory, describing recent theoretical and algorithmic developments.
We also discuss key advances and challenges in the rapidly growing field of machine learning.
arXiv Detail & Related papers (2021-02-24T06:18:16Z) - An Ode to an ODE [78.97367880223254]
We present a new paradigm for Neural ODE algorithms, called ODEtoODE, where time-dependent parameters of the main flow evolve according to a matrix flow on the group O(d)
This nested system of two flows provides stability and effectiveness of training and provably solves the gradient vanishing-explosion problem.
arXiv Detail & Related papers (2020-06-19T22:05:19Z) - Optimizing Neural Networks via Koopman Operator Theory [6.09170287691728]
Koopman operator theory was recently shown to be intimately connected with neural network theory.
In this work we take the first steps in making use of this connection.
We show that Koopman operator theory methods allow predictions of weights and biases of feed weights over a non-trivial range of training time.
arXiv Detail & Related papers (2020-06-03T16:23:07Z) - Dynamic Hierarchical Mimicking Towards Consistent Optimization
Objectives [73.15276998621582]
We propose a generic feature learning mechanism to advance CNN training with enhanced generalization ability.
Partially inspired by DSN, we fork delicately designed side branches from the intermediate layers of a given neural network.
Experiments on both category and instance recognition tasks demonstrate the substantial improvements of our proposed method.
arXiv Detail & Related papers (2020-03-24T09:56:13Z) - Input-to-State Representation in linear reservoirs dynamics [15.491286626948881]
Reservoir computing is a popular approach to design recurrent neural networks.
The working principle of these networks is not fully understood.
A novel analysis of the dynamics of such networks is proposed.
arXiv Detail & Related papers (2020-03-24T00:14:25Z) - Forecasting Sequential Data using Consistent Koopman Autoencoders [52.209416711500005]
A new class of physics-based methods related to Koopman theory has been introduced, offering an alternative for processing nonlinear dynamical systems.
We propose a novel Consistent Koopman Autoencoder model which, unlike the majority of existing work, leverages the forward and backward dynamics.
Key to our approach is a new analysis which explores the interplay between consistent dynamics and their associated Koopman operators.
arXiv Detail & Related papers (2020-03-04T18:24:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.