A purely data-driven framework for prediction, optimization, and control
of networked processes: application to networked SIS epidemic model
- URL: http://arxiv.org/abs/2108.02005v1
- Date: Sun, 1 Aug 2021 03:57:10 GMT
- Title: A purely data-driven framework for prediction, optimization, and control
of networked processes: application to networked SIS epidemic model
- Authors: Ali Tavasoli, Teague Henry, Heman Shakeri
- Abstract summary: We develop a data-driven framework based on operator-theoretic techniques to identify and control nonlinear dynamics over large-scale networks.
The proposed approach requires no prior knowledge of the network structure and identifies the underlying dynamics solely using a collection of two-step snapshots of the states.
- Score: 0.8287206589886881
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Networks are landmarks of many complex phenomena where interweaving
interactions between different agents transform simple local rule-sets into
nonlinear emergent behaviors. While some recent studies unveil associations
between the network structure and the underlying dynamical process, identifying
stochastic nonlinear dynamical processes continues to be an outstanding
problem. Here we develop a simple data-driven framework based on
operator-theoretic techniques to identify and control stochastic nonlinear
dynamics taking place over large-scale networks. The proposed approach requires
no prior knowledge of the network structure and identifies the underlying
dynamics solely using a collection of two-step snapshots of the states. This
data-driven system identification is achieved by using the Koopman operator to
find a low dimensional representation of the dynamical patterns that evolve
linearly. Further, we use the global linear Koopman model to solve critical
control problems by applying to model predictive control (MPC)--typically, a
challenging proposition when applied to large networks. We show that our
proposed approach tackles this by converting the original nonlinear programming
into a more tractable optimization problem that is both convex and with far
fewer variables.
Related papers
- Discovering Governing equations from Graph-Structured Data by Sparse Identification of Nonlinear Dynamical Systems [0.27624021966289597]
We develop a new method called Sparse Identification of Dynamical Systems from Graph-structured data (SINDyG)
SINDyG incorporates the network structure into sparse regression to identify model parameters that explain the underlying network dynamics.
arXiv Detail & Related papers (2024-09-02T17:51:37Z) - Decentralized Learning Strategies for Estimation Error Minimization with Graph Neural Networks [94.2860766709971]
We address the challenge of sampling and remote estimation for autoregressive Markovian processes in a wireless network with statistically-identical agents.
Our goal is to minimize time-average estimation error and/or age of information with decentralized scalable sampling and transmission policies.
arXiv Detail & Related papers (2024-04-04T06:24:11Z) - Amortized Network Intervention to Steer the Excitatory Point Processes [8.15558505134853]
Excitatory point processes (i.e., event flows) occurring over dynamic graphs provide a fine-grained model to capture how discrete events may spread over time and space.
How to effectively steer the event flows by modifying the dynamic graph structures presents an interesting problem, motivated by curbing the spread of infectious diseases.
We design an Amortized Network Interventions framework, allowing for the pooling of optimal policies from history and other contexts.
arXiv Detail & Related papers (2023-10-06T11:17:28Z) - Understanding Multi-phase Optimization Dynamics and Rich Nonlinear
Behaviors of ReLU Networks [8.180184504355571]
We conduct a theoretical characterization of the training process of two-layer ReLU network trained by Gradient Flow on a linearlyparable data.
We reveal four different phases from the whole training process showing a general simplifying-to-complicating learning trend.
Specific nonlinear behaviors can also be precisely identified captured theoretically, such as initial, saddle-plateau dynamics, condensation escape, changes of activation patterns with increasing complexity.
arXiv Detail & Related papers (2023-05-21T14:08:34Z) - Learning Linear Embeddings for Non-Linear Network Dynamics with Koopman
Message Passing [0.0]
We present a novel approach based on Koopman operator theory and message passing networks.
We find a linear representation for the dynamical system which is globally valid at any time step.
The linearisations found by our method produce predictions on a suite of network dynamics problems that are several orders of magnitude better than current state-of-the-art techniques.
arXiv Detail & Related papers (2023-05-15T23:00:25Z) - Interference Cancellation GAN Framework for Dynamic Channels [74.22393885274728]
We introduce an online training framework that can adapt to any changes in the channel.
Our framework significantly outperforms recent neural network models on highly dynamic channels.
arXiv Detail & Related papers (2022-08-17T02:01:18Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
Modern dynamical systems are becoming increasingly non-linear and complex.
There is a need for a framework to model these systems in a compact and comprehensive representation for prediction and control.
Our approach learns these basis functions using a supervised learning approach.
arXiv Detail & Related papers (2021-09-06T04:39:06Z) - DynNet: Physics-based neural architecture design for linear and
nonlinear structural response modeling and prediction [2.572404739180802]
In this study, a physics-based recurrent neural network model is designed that is able to learn the dynamics of linear and nonlinear multiple degrees of freedom systems.
The model is able to estimate a complete set of responses, including displacement, velocity, acceleration, and internal forces.
arXiv Detail & Related papers (2020-07-03T17:05:35Z) - An Ode to an ODE [78.97367880223254]
We present a new paradigm for Neural ODE algorithms, called ODEtoODE, where time-dependent parameters of the main flow evolve according to a matrix flow on the group O(d)
This nested system of two flows provides stability and effectiveness of training and provably solves the gradient vanishing-explosion problem.
arXiv Detail & Related papers (2020-06-19T22:05:19Z) - Forecasting Sequential Data using Consistent Koopman Autoencoders [52.209416711500005]
A new class of physics-based methods related to Koopman theory has been introduced, offering an alternative for processing nonlinear dynamical systems.
We propose a novel Consistent Koopman Autoencoder model which, unlike the majority of existing work, leverages the forward and backward dynamics.
Key to our approach is a new analysis which explores the interplay between consistent dynamics and their associated Koopman operators.
arXiv Detail & Related papers (2020-03-04T18:24:30Z) - Kernel and Rich Regimes in Overparametrized Models [69.40899443842443]
We show that gradient descent on overparametrized multilayer networks can induce rich implicit biases that are not RKHS norms.
We also demonstrate this transition empirically for more complex matrix factorization models and multilayer non-linear networks.
arXiv Detail & Related papers (2020-02-20T15:43:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.