論文の概要: On Optimal Strategies for Wordle and General Guessing Games
- arxiv url: http://arxiv.org/abs/2305.09111v1
- Date: Tue, 16 May 2023 02:30:10 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-17 16:32:15.416764
- Title: On Optimal Strategies for Wordle and General Guessing Games
- Title(参考訳): Wordle and General Guessing Games の最適戦略について
- Authors: Michael Cunanan and Michael Thielscher
- Abstract要約: 我々は,徹底的な探索を回避しながら,ゲーム推定のための最適な戦略を見つける方法を開発した。
この研究は任意の推測ゲームに適用するために開発されていますが、具体的な結果を示す例としてWordleを使用します。
- 参考スコア(独自算出の注目度): 6.85316573653194
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The recent popularity of Wordle has revived interest in guessing games. We
develop a general method for finding optimal strategies for guessing games
while avoiding an exhaustive search. Our main contributions are several
theorems that build towards a general theory to prove the optimality of a
strategy for a guessing game. This work is developed to apply to any guessing
game, but we use Wordle as an example to present concrete results.
- Abstract(参考訳): 最近のWordleの人気はゲームに対する関心を復活させた。
徹底的な探索を避けつつ,ゲームを推測するための最適な戦略を見つけるための一般的な方法を開発した。
我々の主な貢献は、推測ゲームに対する戦略の最適性を証明する一般理論に向けて構築されたいくつかの定理である。
この研究は任意の推測ゲームに適用するために開発されていますが、具体的な結果を示す例としてWordleを使用します。
関連論文リスト
- Decoding Game: On Minimax Optimality of Heuristic Text Generation Strategies [7.641996822987559]
我々は,テキスト生成をストラテジストとネイチャーの2プレイヤーゼロサムゲームとして再定義する,包括的な理論的枠組みであるデコードゲームを提案する。
逆数自然は可能性に対して暗黙の正則化を課し、トラルニケーション正規化法は、この正則化の下での最適戦略の第一次近似である。
論文 参考訳(メタデータ) (2024-10-04T23:18:27Z) - Guessing Winning Policies in LTL Synthesis by Semantic Learning [0.0]
合成問題から派生したパリティゲームにおいて,勝利戦略を推測する学習に基づく手法を提案する。
ゲームの大きさが厳密なアプローチを禁止している場合に、予想される戦略を最善策として適用できるだけでなく、厳密な合成のスケーラビリティをいくつかの方法で向上させることもできる。
論文 参考訳(メタデータ) (2023-05-24T12:57:53Z) - ApproxED: Approximate exploitability descent via learned best responses [61.17702187957206]
連続的なアクションセットを持つゲームの近似的ナッシュ均衡を求める問題について検討する。
本稿では,戦略プロファイルに対するエクスプロイラビリティの近似を最小化する2つの新しい手法を提案する。
論文 参考訳(メタデータ) (2023-01-20T23:55:30Z) - Generalised agent for solving higher board states of tic tac toe using
Reinforcement Learning [0.0]
本研究の目的は, 短時間で正確な移動を行うため, 高位板状板状板状板状板状板状板状板状板状板状板状板状板状板状板状板状板状板状板状板状板状板状板状板状板状板状板状板状板状板状板状板状板状板状板状板状板状板状板状板
そのアイデアは、よく考えられた学習問題として、ティック・タック・トイ・ゲーム(tic tac toe game)を取り入れることだ。
研究とその成果は有望であり、トレーニングの各エポックに比例して高い勝利を与える。
論文 参考訳(メタデータ) (2022-12-23T10:58:27Z) - Strategizing against Learners in Bayesian Games [74.46970859427907]
プレイヤーの1人である学習者が無学習の学習戦略を採用する2人プレイヤゲームについて検討した。
一般のベイズゲームでは,学習者と学習者の双方の報酬の支払いが,そのタイプに依存する可能性がある。
論文 参考訳(メタデータ) (2022-05-17T18:10:25Z) - Spatial State-Action Features for General Games [5.849736173068868]
汎用ゲームのための空間状態対応機能の設計と効率的な実装を定式化する。
これらは、局所的な状態の変数にマッチするかどうかに基づいて、アクションをインセンティブまたは非インセンティブ化するようにトレーニングできるパターンである。
任意の機能セットに対して,アクティブな機能を評価するための効率的なアプローチを提案する。
論文 参考訳(メタデータ) (2022-01-17T13:34:04Z) - Portfolio Search and Optimization for General Strategy Game-Playing [58.896302717975445]
ローリングホライズン進化アルゴリズムに基づく最適化とアクション選択のための新しいアルゴリズムを提案する。
エージェントのパラメータとポートフォリオセットの最適化について,N-tuple Bandit Evolutionary Algorithmを用いて検討する。
エージェントの性能分析により,提案手法はすべてのゲームモードによく一般化し,他のポートフォリオ手法よりも優れることが示された。
論文 参考訳(メタデータ) (2021-04-21T09:28:28Z) - Generating Diverse and Competitive Play-Styles for Strategy Games [58.896302717975445]
ターン型戦略ゲーム(Tribes)のためのプログレッシブアンプランによるPortfolio Monte Carlo Tree Searchを提案する。
品質分散アルゴリズム(MAP-Elites)を使用して異なるプレイスタイルを実現し、競争レベルを維持しながらパラメータ化する方法を示します。
その結果,このアルゴリズムは,トレーニングに用いるレベルを超えて,幅広いゲームレベルにおいても,これらの目標を達成できることが示された。
論文 参考訳(メタデータ) (2021-04-17T20:33:24Z) - Faster Algorithms for Optimal Ex-Ante Coordinated Collusive Strategies
in Extensive-Form Zero-Sum Games [123.76716667704625]
我々は,不完全情報ゼロサム拡張形式ゲームにおいて,対戦相手と対決する2人の選手のチームにとって最適な戦略を見つけることの課題に焦点をあてる。
この設定では、チームができる最善のことは、ゲーム開始時の関節(つまり相関した)確率分布から潜在的にランダム化された戦略(プレイヤー1人)のプロファイルをサンプリングすることである。
各プロファイルにランダム化されるのはチームメンバーの1人だけであるプロファイルのみを用いることで、そのような最適な分布を計算するアルゴリズムを提供する。
論文 参考訳(メタデータ) (2020-09-21T17:51:57Z) - Efficient exploration of zero-sum stochastic games [83.28949556413717]
ゲームプレイを通じて,ゲームの記述を明示せず,託宣のみにアクセス可能な,重要で一般的なゲーム解決環境について検討する。
限られたデュレーション学習フェーズにおいて、アルゴリズムは両方のプレイヤーのアクションを制御し、ゲームを学習し、それをうまくプレイする方法を学習する。
私たちのモチベーションは、クエリされた戦略プロファイルの支払いを評価するのにコストがかかる状況において、利用可能性の低い戦略を迅速に学習することにあります。
論文 参考訳(メタデータ) (2020-02-24T20:30:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。