Partial and full tunneling processes across potential barriers
- URL: http://arxiv.org/abs/2305.09260v4
- Date: Mon, 8 Jan 2024 13:04:54 GMT
- Title: Partial and full tunneling processes across potential barriers
- Authors: Philip Caesar M. Flores, Dean Alvin L. Pablico, and Eric A. Galapon
- Abstract summary: We argue that a partial-tunneling process is always instantaneous, while a full-tunneling process takes a non-zero amount of time.
We are led to the hypothesis that experimentally measured non-zero and vanishing tunneling times correspond to partial and full-tunneling processes, respectively.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce the concept of partial and full tunneling processes to explain
the seemingly contradictory non-zero and vanishing tunneling times often
reported in the literature. Our analysis starts by considering the traversal
time of a quantum particle through a potential barrier, including both above
and below-barrier traversals, using the theory of time-of-arrival operators. We
then show that there are three traversal processes corresponding to
non-tunneling, full-tunneling, and partial tunneling. The distinction between
the three depends on the support of the incident wavepackets energy
distribution in relation to the shape of the barrier. Non-tunneling happens
when the energy distribution of the quantum particle lies above the maximum of
the potential barrier. Otherwise, full-tunneling process occurs when the energy
distribution of the particle is below the minimum of the potential barrier. For
this process, the obtained traversal time is interpreted as the tunneling time.
Finally, the partial-tunneling process occurs when the energy distribution lies
between the minimum and maximum of the potential barrier. This signifies that
the quantum particle tunneled only through some portions of the potential
barrier. We argue that the duration for a partial-tunneling process should not
be interpreted as the tunneling time but instead as a partial traversal time to
differentiate it from the full-tunneling process. We then show that a
full-tunneling process is always instantaneous, while a partial-tunneling
process takes a non-zero amount of time. We are then led to the hypothesis that
experimentally measured non-zero and vanishing tunneling times correspond to
partial and full-tunneling processes, respectively.
Related papers
- Partial confinement in a quantum-link simulator [25.949731736282295]
We show that the spin-1 quantum link model provides an excellent platform for exploring partial confinement.
We conduct a comprehensive investigation of the physics emerging from partial confinement in both the context of equilibrium and non-equilibrium dynamics.
Our work offers a simple and feasible routine for the study of confinement-related physics in the state-of-the-art artificial quantum systems.
arXiv Detail & Related papers (2024-04-28T06:55:08Z) - Time-resolved quantum correlations in electronic noise [28.32223907511862]
We demonstrate experimentally how correlations of current fluctuations at two different times $t$ and $t+tau$ depend on the shape of $V(t)$.
It demonstrates the counterpart of the ac Josephson effect in superconducting junctions, to a normal, non-superconducting mesoscopic device.
arXiv Detail & Related papers (2024-04-13T19:34:39Z) - Chaotic fluctuations in a universal set of transmon qubit gates [37.69303106863453]
Transmon qubits arise from the quantization of nonlinear resonators.
Fast entangling gates, operating at speeds close to the so-called quantum speed limit, contain transient regimes where the dynamics indeed becomes partially chaotic for just two transmons.
arXiv Detail & Related papers (2023-11-24T16:30:56Z) - The time crystal phase emerges from the qubit network under unitary
random operations [9.793615002494237]
We report findings of non-stationary behavior observed in a fully connected qubit network.
Our research provides a new perspective for constructing the time crystal phase in an open system model.
arXiv Detail & Related papers (2023-04-06T06:26:38Z) - Numerical simulations of quantum clock for measuring tunneling times [0.0]
We numerically study two methods of measuring tunneling times using a quantum clock.
In the conventional method using the Larmor clock, we show that the Larmor tunneling time can be shorter for higher tunneling barriers.
In the second method, we study the probability of a spin-flip of a particle when it is transmitted through a potential barrier.
arXiv Detail & Related papers (2022-07-26T18:18:39Z) - Instantaneous tunneling of relativistic massive spin-0 particles [0.0]
A non-relativistic time-of-arrival operator predicted that tunneling time is instantaneous.
This raises the question on whether instantaneous tunneling time is a consequence of using a non-relativistic theory.
arXiv Detail & Related papers (2022-07-19T03:17:45Z) - A General Scenario of Tunneling Time in Different Energy Regimes [0.0]
We study the tunneling time by investigating a wave packet of Bose-condensed atoms passing through a square barrier.
For negative incident energy of the wave packet, counterintuitively, the tunneling time decreases very rapidly with decreasing incident velocity.
For positive incident energy smaller than the barrier height, the tunneling time increases slowly and then reaches a maximum.
arXiv Detail & Related papers (2022-05-19T08:51:42Z) - Time-dependent Interactions in Tunnelling Dynamics [0.5874142059884518]
Tunnelling of a particle through a potential barrier is investigated in the presence of a time-dependent perturbation.
The calculation of the probability density inside the barrier proves that the tunnelling dynamics is determined.
A new method of estimating the tunnelling time by energy experimental measuring is proposed.
arXiv Detail & Related papers (2022-02-14T18:00:10Z) - Coherent superconducting qubits from a subtractive junction fabrication
process [48.7576911714538]
Josephson tunnel junctions are the centerpiece of almost any superconducting electronic circuit, including qubits.
In recent years, sub-micron scale overlap junctions have started to attract attention.
This work paves the way towards a more standardized process flow with advanced materials and growth processes, and constitutes an important step for large scale fabrication of superconducting quantum circuits.
arXiv Detail & Related papers (2020-06-30T14:52:14Z) - Impact of the transverse direction on the many-body tunneling dynamics
in a two-dimensional bosonic Josephson junction [0.0]
Tunneling in a many-body system appears as one of the novel implications of quantum physics.
We theoretically describe the quantum dynamics of the tunneling phenomenon of a few intricate bosonic clouds in a closed system of a two-dimensional symmetric double-well potential.
arXiv Detail & Related papers (2020-06-06T13:51:14Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.