Many-body quantum geometry in time-dependent quantum systems with emergent quantum field theory instantaneously
- URL: http://arxiv.org/abs/2503.18396v2
- Date: Fri, 11 Apr 2025 10:09:36 GMT
- Title: Many-body quantum geometry in time-dependent quantum systems with emergent quantum field theory instantaneously
- Authors: Xiao Wang, Xiaodong He, Jianda Wu,
- Abstract summary: We study many-body quantum geometric effects in time-dependent system with emergent quantum integrable field theory instantaneously.<n>Our results unveil telltale quantum geometric signatures in time-dependent many-body systems, elucidating the intricate interplay between quantum geometry and dynamics.
- Score: 13.437981636279718
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study many-body quantum geometric effects in time-dependent system with emergent quantum integrable field theory instantaneously. We establish a theorem stating that the Berry connection matrix thus all associated geometric quantities of the system can be precisely characterized by excitations up to two particles from the initial quantum integrable system. To illustrate the many-body geometric influence, we analyze an Ising chain subjected to both a small longitudinal field and a slowly rotating transverse field, whose low-energy physics in the scaling limit is instantaneously governed by the quantum $E_8$ integrable field theory. Focusing on the quantum geometric potential (QGP), we show the QGP continuously suppresses the instantaneous energy gaps with decreasing longitudinal field, thereby enhancing many-body Landau-Zener tunneling as evidenced by the Loschmidt echo and its associated spectral entropy. The critical threshold for the longitudinal field strength is determined,where the spectral entropy linearly increases with system size and exhibits hyperscaling behavior when approaching to the threshold. As the longitudinal field passes the threshold and decreases toward zero, the QGP continuously leads to vanishing instantaneous energy gaps involving more low-energy excitations, resulting in increasing spectral entropy indicative of many-body Landau-Zener tunneling.Our results unveil telltale quantum geometric signatures in time-dependent many-body systems, elucidating the intricate interplay between quantum geometry and dynamics.
Related papers
- Geometric quantum drives: Hyperbolically driven quantum systems and beyond [0.0]
We present a construction of driven quantum systems in which the position of a classical particle is used to steer a quantum Hamiltonian over time.
This results in a time-dependent quantum Hamiltonian with a structured temporal profile and properties dependent on the local and global nature of the underlying choice of manifold.
We show that fully gapped hyperbolically driven quantum systems in the adiabatic limit are topologically classified by a quantized dynamical response.
arXiv Detail & Related papers (2025-03-11T10:05:10Z) - Slow Relaxation in a Glassy Quantum Circuit [0.0]
We introduce and analyze a Floquet random quantum circuit that can be tuned between glassy and fully ergodic behavior.
Using an effective field theory for random quantum circuits, we analyze the correlations between quasienergy eigenstates.
We show that the ramp of the spectral form factor is enhanced by a factor of the number of sectors in the glassy regime.
arXiv Detail & Related papers (2024-10-30T17:58:08Z) - Probing critical phenomena in open quantum systems using atom arrays [3.365378662696971]
At quantum critical points, correlations decay as a power law, with exponents determined by a set of universal scaling dimensions.
Here, we employ a Rydberg quantum simulator to adiabatically prepare critical ground states of both a one-dimensional ring and a two-dimensional square lattice.
By accounting for and tuning the openness of our quantum system, we are able to directly observe power-law correlations and extract the corresponding scaling dimensions.
arXiv Detail & Related papers (2024-02-23T15:21:38Z) - Dipolar quantum solids emerging in a Hubbard quantum simulator [45.82143101967126]
Long-range and anisotropic interactions promote rich spatial structure in quantum mechanical many-body systems.
We show that novel strongly correlated quantum phases can be realized using long-range dipolar interaction in optical lattices.
This work opens the door to quantum simulations of a wide range of lattice models with long-range and anisotropic interactions.
arXiv Detail & Related papers (2023-06-01T16:49:20Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Quantum and classical correlations in open quantum-spin lattices via
truncated-cumulant trajectories [0.0]
We show a new method to treat open quantum-spin lattices, based on the solution of the open-system dynamics.
We validate this approach in the paradigmatic case of the phase transitions of the dissipative 2D XYZ lattice, subject to spontaneous decay.
arXiv Detail & Related papers (2022-09-27T13:23:38Z) - Dynamical scaling symmetry and asymptotic quantum correlations for
time-dependent scalar fields [0.0]
In time-independent quantum systems, entanglement entropy possesses an inherent scaling symmetry that the energy of the system does not have.
We show that such systems have dynamical scaling symmetry that leaves the evolution of various measures of quantum correlations invariant.
arXiv Detail & Related papers (2022-05-26T13:20:46Z) - Saturation and recurrence of quantum complexity in random local quantum
dynamics [5.803309695504831]
Quantum complexity is a measure of the minimal number of elementary operations required to prepare a given state or unitary channel.
Brown and Susskind conjectured that the complexity of a chaotic quantum system grows linearly in time up to times exponential in the system size, saturating at a maximal value, and remaining maximally complex until undergoing recurrences at doubly-exponential times.
arXiv Detail & Related papers (2022-05-19T17:42:31Z) - From geometry to coherent dissipative dynamics in quantum mechanics [68.8204255655161]
We work out the case of finite-level systems, for which it is shown by means of the corresponding contact master equation.
We describe quantum decays in a 2-level system as coherent and continuous processes.
arXiv Detail & Related papers (2021-07-29T18:27:38Z) - Sensing quantum chaos through the non-unitary geometric phase [62.997667081978825]
We propose a decoherent mechanism for sensing quantum chaos.
The chaotic nature of a many-body quantum system is sensed by studying the implications that the system produces in the long-time dynamics of a probe coupled to it.
arXiv Detail & Related papers (2021-04-13T17:24:08Z) - Symmetry-resolved dynamical purification in synthetic quantum matter [1.2189422792863447]
We show that symmetry-resolved information spreading is inhibited due to the competition of coherent and incoherent dynamics.
Our work shows that symmetry plays a key role as a magnifying glass to characterize many-body dynamics in open quantum systems.
arXiv Detail & Related papers (2021-01-19T19:01:09Z) - Quantum Algorithms for Open Lattice Field Theory [0.0]
We develop non-Hermitian quantum circuits and explore their promise on a benchmark, the quantum one-dimensional Ising model with complex longitudinal magnetic field.
The development of attractors past critical points in the space of complex couplings indicates a potential for study on near-term noisy hardware.
arXiv Detail & Related papers (2020-12-09T19:00:18Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Many-Body Dephasing in a Trapped-Ion Quantum Simulator [0.0]
How a closed interacting quantum many-body system relaxes and dephases as a function of time is a fundamental question in thermodynamic and statistical physics.
We analyse and observe the persistent temporal fluctuations after a quantum quench of a tunable long-range interacting transverse-field Ising Hamiltonian realized with a trapped-ion quantum simulator.
arXiv Detail & Related papers (2020-01-08T12:33:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.