論文の概要: When is an SHM problem a Multi-Task-Learning problem?
- arxiv url: http://arxiv.org/abs/2305.09425v1
- Date: Tue, 16 May 2023 13:31:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-17 14:47:18.342867
- Title: When is an SHM problem a Multi-Task-Learning problem?
- Title(参考訳): SHM問題はいつマルチタスク学習問題なのか?
- Authors: Sarah Bee, Lawrence Bull, Nikolas Dervilis, Keith Worden
- Abstract要約: マルチタスクニューラルネットワークはタスクを同時に学習し、個々のタスク性能を改善する。
マルチタスク学習(MTL)には3つのメカニズムがある
MTLのこれらの問題設定は、それぞれ詳細であり、サンプルが与えられる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Multi-task neural networks learn tasks simultaneously to improve individual
task performance. There are three mechanisms of multi-task learning (MTL) which
are explored here for the context of structural health monitoring (SHM): (i)
the natural occurrence of multiple tasks; (ii) using outputs as inputs (both
linked to the recent research in population-based SHM (PBSHM)); and, (iii)
additional loss functions to provide different insights. Each of these problem
settings for MTL is detailed and an example is given.
- Abstract(参考訳): マルチタスクニューラルネットワークはタスクを同時に学習し、個々のタスクパフォーマンスを改善する。
マルチタスク学習(MTL)には3つのメカニズムがあり、構造的健康モニタリング(SHM)の文脈で研究されている。
(i)複数の業務の自然発生
(ii)出力を入力として用いること(人口ベースのscm(pbshm)の最近の研究と関連づけられること)
(iii)異なる洞察を提供する追加の損失関数。
MTLのこれらの問題設定については、それぞれ詳細と例を挙げる。
関連論文リスト
- When Multi-Task Learning Meets Partial Supervision: A Computer Vision Review [7.776434991976473]
マルチタスク学習(MTL)は,相互関係を利用して複数のタスクを同時に学習することを目的としている。
このレビューは、これらの課題に対処するために、異なる部分的な監視設定の下でMTLをどのように活用するかに焦点を当てる。
論文 参考訳(メタデータ) (2023-07-25T20:08:41Z) - Sample-Level Weighting for Multi-Task Learning with Auxiliary Tasks [0.0]
マルチタスク学習(MTL)は、関連するタスクと表現を共有することにより、ニューラルネットワークの一般化性能を向上させることができる。
MTLはまた、タスク間の有害な干渉によってパフォーマンスを低下させる。
補助タスクを用いたマルチタスク学習のためのサンプルレベル重み付けアルゴリズムであるSLGradを提案する。
論文 参考訳(メタデータ) (2023-06-07T15:29:46Z) - Few-shot Multimodal Multitask Multilingual Learning [0.0]
我々は、事前学習された視覚と言語モデルを適用することで、マルチモーダルマルチタスク(FM3)設定のための数ショット学習を提案する。
FM3は、ビジョンと言語領域における最も顕著なタスクと、それらの交差点を学習する。
論文 参考訳(メタデータ) (2023-02-19T03:48:46Z) - M$^3$ViT: Mixture-of-Experts Vision Transformer for Efficient Multi-task
Learning with Model-Accelerator Co-design [95.41238363769892]
マルチタスク学習(MTL)は、複数の学習タスクを単一のモデルにカプセル化し、それらのタスクを共同でよりよく学習できるようにする。
現在のMTLレギュレータは、1つのタスクだけを実行するためにさえ、ほぼすべてのモデルを起動する必要がある。
効率的なオンデバイスMTLを実現するためのモデル-アクセラレータ共設計フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-26T15:40:24Z) - Sparsely Activated Mixture-of-Experts are Robust Multi-Task Learners [67.5865966762559]
本研究では,Mixture-of-Experts (MoE) がマルチタスク学習を改善するかを検討した。
タスク認識ゲーティング関数を考案し、異なるタスクから専門の専門家にサンプルをルーティングする。
これにより、多数のパラメータを持つ疎活性化マルチタスクモデルが得られるが、高密度モデルの計算コストは同じである。
論文 参考訳(メタデータ) (2022-04-16T00:56:12Z) - On Steering Multi-Annotations per Sample for Multi-Task Learning [79.98259057711044]
マルチタスク学習の研究はコミュニティから大きな注目を集めている。
目覚ましい進歩にもかかわらず、異なるタスクを同時に学習するという課題はまだ検討されていない。
従来の研究は、異なるタスクから勾配を修正しようとするが、これらの手法はタスク間の関係の主観的な仮定を与え、修正された勾配はより正確でないかもしれない。
本稿では,タスク割り当てアプローチによってこの問題に対処する機構であるタスク割当(STA)を紹介し,各サンプルをランダムにタスクのサブセットに割り当てる。
さらなる進展のために、我々は全てのタスクを反復的に割り当てるためにInterleaved Task Allocation(ISTA)を提案する。
論文 参考訳(メタデータ) (2022-03-06T11:57:18Z) - Variational Multi-Task Learning with Gumbel-Softmax Priors [105.22406384964144]
マルチタスク学習は、タスク関連性を探究し、個々のタスクを改善することを目的としている。
本稿では,複数のタスクを学習するための一般的な確率的推論フレームワークである変分マルチタスク学習(VMTL)を提案する。
論文 参考訳(メタデータ) (2021-11-09T18:49:45Z) - Multi-Task Learning with Deep Neural Networks: A Survey [0.0]
マルチタスク学習(Multi-task learning、MTL)は、複数のタスクを共有モデルで同時に学習する機械学習のサブフィールドである。
深層ニューラルネットワークにおけるマルチタスク学習手法の概要を述べる。
論文 参考訳(メタデータ) (2020-09-10T19:31:04Z) - Multi-Task Learning for Dense Prediction Tasks: A Survey [87.66280582034838]
マルチタスク学習(MTL)技術は、性能、計算、メモリフットプリントに関する有望な結果を示している。
我々は、コンピュータビジョンにおけるMLLのための最先端のディープラーニングアプローチについて、よく理解された視点を提供する。
論文 参考訳(メタデータ) (2020-04-28T09:15:50Z) - MTI-Net: Multi-Scale Task Interaction Networks for Multi-Task Learning [82.62433731378455]
特定のスケールで高い親和性を持つタスクは、他のスケールでこの動作を維持することが保証されていないことを示す。
本稿では,この発見に基づく新しいアーキテクチャ MTI-Net を提案する。
論文 参考訳(メタデータ) (2020-01-19T21:02:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。