Quantum Machine Learning: Quantum Kernel Methods
- URL: http://arxiv.org/abs/2405.01780v1
- Date: Thu, 2 May 2024 23:45:29 GMT
- Title: Quantum Machine Learning: Quantum Kernel Methods
- Authors: Sanjeev Naguleswaran,
- Abstract summary: Kernel methods are a powerful and popular technique in classical Machine Learning.
The use of a quantum feature space that can only be calculated efficiently on a quantum computer potentially allows for deriving a quantum advantage.
A data dependent projected quantum kernel was shown to provide significant advantage over classical kernels.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Quantum algorithms based on quantum kernel methods have been investigated previously [1]. A quantum advantage is derived from the fact that it is possible to construct a family of datasets for which, only quantum processing can recognise the intrinsic labelling patterns, while for classical computers the dataset looks like noise. This is due to the algorithm leveraging inherent efficiencies in the computation of logarithms in a cyclic group. The discrete log problem.is a well-known advantage of quantum vs classical computation: where it is possible to generate all the members of the group using a single mathematical operation. Kernel methods are a powerful and popular technique in classical Machine Learning. The use of a quantum feature space that can only be calculated efficiently on a quantum computer potentially allows for deriving a quantum advantage. In this paper, we intend to first describe the application of such a kernel method to a Quantum version of the classical Support Vector Machine (SVM) algorithm to identify conditions under which, a quantum advantage is realised. A data dependent projected quantum kernel was shown to provide significant advantage over classical kernels. Further, we present results of investigations and ideas pertaining to extending the use of quantum kernels as a feature extraction layer in a Convolutional Neural Networks (CNN) that is a widely used architecture in deep-learning applications.
Related papers
- The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - A Kerr kernel quantum learning machine [0.0]
We propose a quantum hardware kernel implementation scheme based on superconducting quantum circuits.
The scheme does not use qubits or quantum circuits but rather exploits the analogue features of Kerr modes.
arXiv Detail & Related papers (2024-04-02T09:50:33Z) - Quadratic speed-ups in quantum kernelized binary classification [1.3812010983144802]
Several quantum machine learning algorithms that use quantum kernels as a measure of similarities between data have emerged to perform binary classification on datasets encoded as quantum states.
We propose new quantum circuits for the QKCs in which the number of qubits is reduced by one, and the circuit depth is reduced linearly with respect to the number of sample data.
We verify the quadratic speed-up over previous methods through numerical simulations on the Iris dataset.
arXiv Detail & Related papers (2024-03-26T07:39:48Z) - Power Characterization of Noisy Quantum Kernels [52.47151453259434]
We show that noise may make quantum kernel methods to only have poor prediction capability, even when the generalization error is small.
We provide a crucial warning to employ noisy quantum kernel methods for quantum computation.
arXiv Detail & Related papers (2024-01-31T01:02:16Z) - Quantum-Classical Multiple Kernel Learning [0.0]
Kernel methods in machine learning is one area where such improvements could be realized in the future.
Small and noisy quantum computers can evaluate classically-parametric quantum kernels that capture unique notions of similarity in data.
We consider pairwise combinations of classical, quantum-quantum, quantum-classical and QC kernels in the context of multiple kernel (MKL)
We show this approach to be effective for enhancing various metrics performance in an MKL setting.
arXiv Detail & Related papers (2023-05-28T12:29:04Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Quantum Clustering with k-Means: a Hybrid Approach [117.4705494502186]
We design, implement, and evaluate three hybrid quantum k-Means algorithms.
We exploit quantum phenomena to speed up the computation of distances.
We show that our hybrid quantum k-Means algorithms can be more efficient than the classical version.
arXiv Detail & Related papers (2022-12-13T16:04:16Z) - Variational Quantum Kernels with Task-Specific Quantum Metric Learning [0.8722210937404288]
Kernel methods rely on the notion of similarity between points in a higher (possibly infinite) dimensional feature space.
We discuss the use of variational quantum kernels with task-specific quantum metric learning to generate optimal quantum embeddings.
arXiv Detail & Related papers (2022-11-08T18:36:25Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vazirani algorithm allows one to determine a bit string encoded into an oracle.
We analyze in detail the quantum resources in the Bernstein-Vazirani algorithm.
We show that in the absence of entanglement, the performance of the algorithm is directly related to the amount of quantum coherence in the initial state.
arXiv Detail & Related papers (2022-05-26T20:32:36Z) - Quantum tangent kernel [0.8921166277011345]
In this work, we explore a quantum machine learning model with a deep parameterized quantum circuit.
We find that parameters of a deep enough quantum circuit do not move much from its initial values during training.
Such a deep variational quantum machine learning can be described by another emergent kernel, quantum tangent kernel.
arXiv Detail & Related papers (2021-11-04T15:38:52Z) - Towards understanding the power of quantum kernels in the NISQ era [79.8341515283403]
We show that the advantage of quantum kernels is vanished for large size datasets, few number of measurements, and large system noise.
Our work provides theoretical guidance of exploring advanced quantum kernels to attain quantum advantages on NISQ devices.
arXiv Detail & Related papers (2021-03-31T02:41:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.