Toward Falsifying Causal Graphs Using a Permutation-Based Test
- URL: http://arxiv.org/abs/2305.09565v2
- Date: Thu, 19 Dec 2024 13:27:40 GMT
- Title: Toward Falsifying Causal Graphs Using a Permutation-Based Test
- Authors: Elias Eulig, Atalanti A. Mastakouri, Patrick Blöbaum, Michaela Hardt, Dominik Janzing,
- Abstract summary: Existing metrics provide an $textitabsolute$ number of inconsistencies between the graph and the observed data.<n>We propose a novel consistency metric by constructing a baseline through node permutations.<n>By comparing the number of inconsistencies with those on the baseline, we derive an interpretable metric.
- Score: 11.826804773695033
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding causal relationships among the variables of a system is paramount to explain and control its behavior. For many real-world systems, however, the true causal graph is not readily available and one must resort to predictions made by algorithms or domain experts. Therefore, metrics that quantitatively assess the goodness of a causal graph provide helpful checks before using it in downstream tasks. Existing metrics provide an $\textit{absolute}$ number of inconsistencies between the graph and the observed data, and without a baseline, practitioners are left to answer the hard question of how many such inconsistencies are acceptable or expected. Here, we propose a novel consistency metric by constructing a baseline through node permutations. By comparing the number of inconsistencies with those on the baseline, we derive an interpretable metric that captures whether the graph is significantly better than random. Evaluating on both simulated and real data sets from various domains, including biology and cloud monitoring, we demonstrate that the true graph is not falsified by our metric, whereas the wrong graphs given by a hypothetical user are likely to be falsified.
Related papers
- Graph Counterfactual Explainable AI via Latent Space Traversal [4.337339380445765]
Counterfactual explanations aim to explain predictions by finding the ''nearest'' in-distribution alternative input.
We propose a method to generate counterfactual explanations for any differentiable black-box graph classifier.
We empirically validate the approach on three graph datasets, showing that our model is consistently high-performing and more robust than the baselines.
arXiv Detail & Related papers (2025-01-15T15:04:10Z) - DAGnosis: Localized Identification of Data Inconsistencies using
Structures [73.39285449012255]
Identification and appropriate handling of inconsistencies in data at deployment time is crucial to reliably use machine learning models.
We use directed acyclic graphs (DAGs) to encode the training set's features probability distribution and independencies as a structure.
Our method, called DAGnosis, leverages these structural interactions to bring valuable and insightful data-centric conclusions.
arXiv Detail & Related papers (2024-02-26T11:29:16Z) - False Discovery Rate Control for Gaussian Graphical Models via
Neighborhood Screening [1.7924920920347915]
We introduce a nodewise variable selection approach to graph learning and provably control the false discovery rate of the selected edge set at a self-estimated level.
A novel fusion method of the individual neighborhoods outputs an undirected graph estimate.
arXiv Detail & Related papers (2024-01-18T13:46:41Z) - BayesDAG: Gradient-Based Posterior Inference for Causal Discovery [30.027520859604955]
We introduce a scalable causal discovery framework based on a combination of Markov Chain Monte Carlo and Variational Inference.
Our approach directly samples DAGs from the posterior without requiring any DAG regularization.
We derive a novel equivalence to the permutation-based DAG learning, which opens up possibilities of using any relaxed estimator defined over permutations.
arXiv Detail & Related papers (2023-07-26T02:34:13Z) - Conformal link prediction for false discovery rate control [0.0]
We consider the problem of identifying a set of true edges with a control of the false discovery rate (FDR)
We propose a novel method based on high-level ideas from the literature on conformal inference.
arXiv Detail & Related papers (2023-06-26T13:38:49Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
We study causal representation learning, the task of inferring latent causal variables and their causal relations from mixtures of the variables.
Our goal is to identify both the ground truth latents and their causal graph up to a set of ambiguities which we show to be irresolvable from interventional data.
arXiv Detail & Related papers (2023-06-01T10:51:58Z) - Rethinking Explaining Graph Neural Networks via Non-parametric Subgraph
Matching [68.35685422301613]
We propose a novel non-parametric subgraph matching framework, dubbed MatchExplainer, to explore explanatory subgraphs.
It couples the target graph with other counterpart instances and identifies the most crucial joint substructure by minimizing the node corresponding-based distance.
Experiments on synthetic and real-world datasets show the effectiveness of our MatchExplainer by outperforming all state-of-the-art parametric baselines with significant margins.
arXiv Detail & Related papers (2023-01-07T05:14:45Z) - CLEAR: Generative Counterfactual Explanations on Graphs [60.30009215290265]
We study the problem of counterfactual explanation generation on graphs.
A few studies have explored counterfactual explanations on graphs, but many challenges of this problem are still not well-addressed.
We propose a novel framework CLEAR which aims to generate counterfactual explanations on graphs for graph-level prediction models.
arXiv Detail & Related papers (2022-10-16T04:35:32Z) - Debiasing Graph Neural Networks via Learning Disentangled Causal
Substructure [46.86463923605841]
We present a graph classification investigation on the training graphs with severe bias.
We discover that GNNs always tend to explore the spurious correlations to make decision.
We propose a general disentangled GNN framework to learn the causal substructure and bias substructure.
arXiv Detail & Related papers (2022-09-28T13:55:52Z) - Causal Transportability for Visual Recognition [70.13627281087325]
We show that standard classifiers fail because the association between images and labels is not transportable across settings.
We then show that the causal effect, which severs all sources of confounding, remains invariant across domains.
This motivates us to develop an algorithm to estimate the causal effect for image classification.
arXiv Detail & Related papers (2022-04-26T15:02:11Z) - FactGraph: Evaluating Factuality in Summarization with Semantic Graph
Representations [114.94628499698096]
We propose FactGraph, a method that decomposes the document and the summary into structured meaning representations (MRs)
MRs describe core semantic concepts and their relations, aggregating the main content in both document and summary in a canonical form, and reducing data sparsity.
Experiments on different benchmarks for evaluating factuality show that FactGraph outperforms previous approaches by up to 15%.
arXiv Detail & Related papers (2022-04-13T16:45:33Z) - Graphon-aided Joint Estimation of Multiple Graphs [24.077455621015552]
We consider the problem of estimating the topology of multiple networks from nodal observations.
We adopt a graphon as our random graph model, which is a nonparametric model from which graphs of potentially different sizes can be drawn.
arXiv Detail & Related papers (2022-02-11T15:20:44Z) - Graph Self-supervised Learning with Accurate Discrepancy Learning [64.69095775258164]
We propose a framework that aims to learn the exact discrepancy between the original and the perturbed graphs, coined as Discrepancy-based Self-supervised LeArning (D-SLA)
We validate our method on various graph-related downstream tasks, including molecular property prediction, protein function prediction, and link prediction tasks, on which our model largely outperforms relevant baselines.
arXiv Detail & Related papers (2022-02-07T08:04:59Z) - BCD Nets: Scalable Variational Approaches for Bayesian Causal Discovery [97.79015388276483]
A structural equation model (SEM) is an effective framework to reason over causal relationships represented via a directed acyclic graph (DAG)
Recent advances enabled effective maximum-likelihood point estimation of DAGs from observational data.
We propose BCD Nets, a variational framework for estimating a distribution over DAGs characterizing a linear-Gaussian SEM.
arXiv Detail & Related papers (2021-12-06T03:35:21Z) - Residual2Vec: Debiasing graph embedding with random graphs [1.9280643035418397]
We propose residual2vec, a general graph embedding method that can debias various structural biases in graphs by using random graphs.
We demonstrate that this debiasing not only improves link prediction and clustering performance but also allows us to explicitly model salient structural properties in graph embedding.
arXiv Detail & Related papers (2021-10-14T18:24:11Z) - ExplaGraphs: An Explanation Graph Generation Task for Structured
Commonsense Reasoning [65.15423587105472]
We present a new generative and structured commonsense-reasoning task (and an associated dataset) of explanation graph generation for stance prediction.
Specifically, given a belief and an argument, a model has to predict whether the argument supports or counters the belief and also generate a commonsense-augmented graph that serves as non-trivial, complete, and unambiguous explanation for the predicted stance.
A significant 83% of our graphs contain external commonsense nodes with diverse structures and reasoning depths.
arXiv Detail & Related papers (2021-04-15T17:51:36Z) - Deconfounded Score Method: Scoring DAGs with Dense Unobserved
Confounding [101.35070661471124]
We show that unobserved confounding leaves a characteristic footprint in the observed data distribution that allows for disentangling spurious and causal effects.
We propose an adjusted score-based causal discovery algorithm that may be implemented with general-purpose solvers and scales to high-dimensional problems.
arXiv Detail & Related papers (2021-03-28T11:07:59Z) - Identification of Latent Variables From Graphical Model Residuals [0.0]
We present a novel method to control for the latent space when estimating a DAG by iteratively deriving proxies for the latent space from the residuals of the inferred model.
We show that any improvement of prediction of an outcome is intrinsically capped and cannot rise beyond a certain limit as compared to the confounded model.
arXiv Detail & Related papers (2021-01-07T02:28:49Z) - Line Graph Neural Networks for Link Prediction [71.00689542259052]
We consider the graph link prediction task, which is a classic graph analytical problem with many real-world applications.
In this formalism, a link prediction problem is converted to a graph classification task.
We propose to seek a radically different and novel path by making use of the line graphs in graph theory.
In particular, each node in a line graph corresponds to a unique edge in the original graph. Therefore, link prediction problems in the original graph can be equivalently solved as a node classification problem in its corresponding line graph, instead of a graph classification task.
arXiv Detail & Related papers (2020-10-20T05:54:31Z) - Alleviating the Inconsistency Problem of Applying Graph Neural Network
to Fraud Detection [78.88163190021798]
We introduce a new GNN framework, $mathsfGraphConsis$, to tackle the inconsistency problem.
Empirical analysis on four datasets indicates the inconsistency problem is crucial in a fraud detection task.
We also released a GNN-based fraud detection toolbox with implementations of SOTA models.
arXiv Detail & Related papers (2020-05-01T21:43:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.