論文の概要: Decision-based iterative fragile watermarking for model integrity
verification
- arxiv url: http://arxiv.org/abs/2305.09684v1
- Date: Sat, 13 May 2023 10:36:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-18 19:11:22.757376
- Title: Decision-based iterative fragile watermarking for model integrity
verification
- Title(参考訳): モデル整合性検証のための決定に基づく繰り返しフラクティブ透かし
- Authors: Zhaoxia Yin, Heng Yin, Hang Su, Xinpeng Zhang, Zhenzhe Gao
- Abstract要約: ファンデーションモデルは一般的に、彼らのサービスに対する高い需要を満たすために、クラウドサーバー上でホストされる。
これは、アタッカーがクラウドにアップロードしたり、ローカルシステムから転送した後で修正できるため、セキュリティ上のリスクにさらされる。
本稿では,通常のトレーニングサンプルをモデル変更に敏感な脆弱なサンプルに変換する,反復的意思決定に基づく脆弱な透かしアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 33.42076236847454
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Typically, foundation models are hosted on cloud servers to meet the high
demand for their services. However, this exposes them to security risks, as
attackers can modify them after uploading to the cloud or transferring from a
local system. To address this issue, we propose an iterative decision-based
fragile watermarking algorithm that transforms normal training samples into
fragile samples that are sensitive to model changes. We then compare the output
of sensitive samples from the original model to that of the compromised model
during validation to assess the model's completeness.The proposed fragile
watermarking algorithm is an optimization problem that aims to minimize the
variance of the predicted probability distribution outputed by the target model
when fed with the converted sample.We convert normal samples to fragile samples
through multiple iterations. Our method has some advantages: (1) the iterative
update of samples is done in a decision-based black-box manner, relying solely
on the predicted probability distribution of the target model, which reduces
the risk of exposure to adversarial attacks, (2) the small-amplitude multiple
iterations approach allows the fragile samples to perform well visually, with a
PSNR of 55 dB in TinyImageNet compared to the original samples, (3) even with
changes in the overall parameters of the model of magnitude 1e-4, the fragile
samples can detect such changes, and (4) the method is independent of the
specific model structure and dataset. We demonstrate the effectiveness of our
method on multiple models and datasets, and show that it outperforms the
current state-of-the-art.
- Abstract(参考訳): 通常、ファンデーションモデルは彼らのサービスに対する高い需要を満たすためにクラウドサーバーにホストされる。
しかしこれは、アタッカーがクラウドにアップロードしたり、ローカルシステムから転送した後で修正できるため、セキュリティ上のリスクにさらされる。
そこで本研究では,通常のトレーニングサンプルをモデル変更に敏感な脆弱なサンプルに変換する反復的決定ベース脆弱性透かしアルゴリズムを提案する。
提案手法は,変換されたサンプルを投入した場合に,対象モデルが出力する予測確率分布の分散を最小化することを目的とした最適化問題であり,通常のサンプルを複数回繰り返して脆弱なサンプルに変換する。
Our method has some advantages: (1) the iterative update of samples is done in a decision-based black-box manner, relying solely on the predicted probability distribution of the target model, which reduces the risk of exposure to adversarial attacks, (2) the small-amplitude multiple iterations approach allows the fragile samples to perform well visually, with a PSNR of 55 dB in TinyImageNet compared to the original samples, (3) even with changes in the overall parameters of the model of magnitude 1e-4, the fragile samples can detect such changes, and (4) the method is independent of the specific model structure and dataset.
本稿では,複数のモデルとデータセットにおける提案手法の有効性を実証し,現状よりも優れていることを示す。
関連論文リスト
- Model Integrity when Unlearning with T2I Diffusion Models [11.321968363411145]
「忘れ分布からのサンプルを特徴とする特定種類の画像の生成を減らすために、近似機械学習アルゴリズムを提案する。」
次に、既存のベースラインと比較してモデルの整合性を保つ上で優れた効果を示す未学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-11-04T13:15:28Z) - Learning Augmentation Policies from A Model Zoo for Time Series Forecasting [58.66211334969299]
本稿では,強化学習に基づく学習可能なデータ拡張手法であるAutoTSAugを紹介する。
限界サンプルを学習可能なポリシーで強化することにより、AutoTSAugは予測性能を大幅に改善する。
論文 参考訳(メタデータ) (2024-09-10T07:34:19Z) - Informed Correctors for Discrete Diffusion Models [32.87362154118195]
モデルで学習した情報を活用することにより、より確実に離散化誤差に対処できる情報修正系を提案する。
また,$k$-Gillespie'sも提案する。これは,各モデル評価をよりよく活用するサンプリングアルゴリズムで,$tau$-leapingの速度と柔軟性を引き続き享受する。
いくつかの実・合成データセットにおいて,情報付き修正器を用いた$k$-Gillespieは,より低い計算コストで高い品質のサンプルを確実に生成することを示す。
論文 参考訳(メタデータ) (2024-07-30T23:29:29Z) - Which Pretrain Samples to Rehearse when Finetuning Pretrained Models? [60.59376487151964]
特定のタスクに関する微調整済みモデルが、テキストとビジョンタスクの事実上のアプローチになった。
このアプローチの落とし穴は、微調整中に起こる事前学習の知識を忘れることである。
本研究では,実際に忘れられているサンプルを識別・優先順位付けする新しいサンプリング手法であるmix-cdを提案する。
論文 参考訳(メタデータ) (2024-02-12T22:32:12Z) - Sampling from Arbitrary Functions via PSD Models [55.41644538483948]
まず確率分布をモデル化し,そのモデルからサンプリングする。
これらのモデルでは, 少数の評価値を用いて, 高精度に多数の密度を近似することが可能であることが示され, それらのモデルから効果的にサンプルする簡単なアルゴリズムが提示される。
論文 参考訳(メタデータ) (2021-10-20T12:25:22Z) - Contextual Dropout: An Efficient Sample-Dependent Dropout Module [60.63525456640462]
ドロップアウトは、ディープニューラルネットワークのトレーニングプロセスを正規化するシンプルで効果的なモジュールとして実証されています。
単純でスケーラブルなサンプル依存型ドロップアウトモジュールとして,効率的な構造設計によるコンテキスト型ドロップアウトを提案する。
提案手法は,不確実性推定の精度と品質の両面において,ベースライン法よりも優れていた。
論文 参考訳(メタデータ) (2021-03-06T19:30:32Z) - Anytime Sampling for Autoregressive Models via Ordered Autoencoding [88.01906682843618]
自動回帰モデルは画像生成や音声生成などのタスクに広く使われている。
これらのモデルのサンプリングプロセスは割り込みを許さず、リアルタイムの計算資源に適応できない。
いつでもサンプリングできる新しい自動回帰モデルファミリーを提案します。
論文 参考訳(メタデータ) (2021-02-23T05:13:16Z) - One for More: Selecting Generalizable Samples for Generalizable ReID
Model [92.40951770273972]
本稿では,選択したサンプルを損失関数として一般化する1対3の学習目標を提案する。
提案した1対3のサンプルは,ReIDトレーニングフレームワークにシームレスに統合できる。
論文 参考訳(メタデータ) (2020-12-10T06:37:09Z) - Instance Selection for GANs [25.196177369030146]
GAN(Generative Adversarial Networks)は、高品質な合成画像を生成するために広く採用されている。
GANはしばしばデータ多様体の外にある非現実的なサンプルを生成する。
本稿では,サンプルの品質向上のための新しいアプローチを提案する。モデルトレーニングが行われる前に,インスタンス選択によるトレーニングデータセットの変更を行う。
論文 参考訳(メタデータ) (2020-07-30T06:33:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。