Dynamical structure factor and a new method to measure the pairing gap in two-dimensional attractive Fermi-Hubbard model
- URL: http://arxiv.org/abs/2305.09685v3
- Date: Sat, 28 Jun 2025 14:55:57 GMT
- Title: Dynamical structure factor and a new method to measure the pairing gap in two-dimensional attractive Fermi-Hubbard model
- Authors: Huaisong Zhao, Feng Yuan, Tianxing Ma, Peng Zou,
- Abstract summary: Measurement of the pairing gap plays an essential role in studying the physical properties of superconductors or superfluids.<n>We develop a strategy for measure the pairing gap through the dynamical excitations.
- Score: 6.698323377492034
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The measurement of the pairing gap plays an essential role in studying the physical properties of superconductors or superfluids. We develop a strategy for measure the pairing gap through the dynamical excitations. With the random phase approximation (RPA), the dynamical excitations of a two-dimensional attractive Fermi-Hubbard model are studied by calculating the dynamical structure factor. Two distinct collective modes are investigated: a Goldstone phonon mode at the transferred momentum ${\bf q}=\left[0,0\right]$ and a roton mode at ${\bf q}=\left[\pi,\pi\right]$. The roton mode demonstrates a sharp molecular peak in the low-energy regime. Remarkably, the area under the roton molecular peak scales with the square of the pairing gap, which persists even in three-dimensional and spin-orbit coupled (SOC) optical lattices. This result provides a potential strategy to measure the pairing gap of lattice systems experimentally by measuring the dynamical structure factor at ${\bf q}=\left[\pi,\pi\right]$.
Related papers
- Exponential onset of scalable entanglement via twist-and-turn dynamics in XY models [41.94295877935867]
We show that the so-called twist-and-turn" (TaT) dynamics can offer an important resource to reach scalable multipartite entanglement.<n>For dipolar interactions, the entanglement dynamics at intermediate times is completely at odds with thermalization.
arXiv Detail & Related papers (2025-07-10T22:34:44Z) - Harnessing Chiral Spin States in Molecular Nanomagnets for Quantum Technologies [44.1973928137492]
We show that chiral qubits naturally suppress always-on interactions that can not be switched off in weakly coupled qubits.
Our findings establish spin chirality engineering as a promising strategy for mitigating always-on interaction in entangling two chiral qubits in molecular quantum technologies.
arXiv Detail & Related papers (2025-01-21T08:23:12Z) - Constrained dynamics and confinement in the two-dimensional quantum Ising model [0.0]
We investigate the dynamics of the quantum Ising model on two-dimensional square lattices up to $16 times 16$ spins.<n>In the ordered phase, the model is predicted to exhibit dynamically constrained dynamics, leading to confinement of excitations and slow thermalization.
arXiv Detail & Related papers (2024-06-17T18:01:34Z) - Dynamics of a Generalized Dicke Model for Spin-1 Atoms [0.0]
The Dicke model is a staple of theoretical cavity Quantum Electrodynamics (cavity QED)
It demonstrates a rich variety of dynamics such as phase transitions, phase multistability, and chaos.
The varied and complex behaviours admitted by the model highlights the need to more rigorously map its dynamics.
arXiv Detail & Related papers (2024-03-04T04:09:35Z) - Two-mode Squeezing in Floquet Engineered Power-law Interacting Spin Models [0.0]
We find scalable generation of entanglement in the form of two-mode squeezing between the layers can generically be achieved in powerlaw models.
spatially-temporally engineered interactions allow to significantly increase the generated entanglement and in fact achieve Heisenberg limited scaling.
arXiv Detail & Related papers (2024-02-28T19:00:06Z) - Bardeen-Cooper-Schrieffer interaction as an infinite-range Penson-Kolb pairing mechanism [0.0]
We show that the well-known $(kuparrow, -kdownarrow)$ Bardeen-Cooper-Schrieffer interaction, when considered in real space, is equivalent to an infinite-range Penson-Kolb pairing mechanism.
We investigate the dynamics of fermionic particles confined in a ring-shaped lattice.
arXiv Detail & Related papers (2024-01-30T10:29:46Z) - Quench dynamics in higher-dimensional Holstein models: Insights from Truncated Wigner Approaches [41.94295877935867]
We study the melting of charge-density waves in a Holstein model after a sudden switch-on of the electronic hopping.
A comparison with exact data obtained for a Holstein chain shows that a semiclassical treatment of both the electrons and phonons is required in order to correctly describe the phononic dynamics.
arXiv Detail & Related papers (2023-12-19T16:14:01Z) - Superfluid-droplet crossover in a binary boson mixture on a ring: Exact
diagonalization solutions for few-particle systems in one dimension [0.0]
We investigate the formation of self-bound quantum droplets in a one-dimensional binary mixture of bosonic atoms.
Results show a remarkable agreement between the few-body regime and the thermodynamic limit in one dimension.
arXiv Detail & Related papers (2023-02-01T11:45:45Z) - Dynamic properties and the roton mode attenuation in the liquid 3He: an
ab initio study within the self-consistent method of moments [0.0]
The density-numbers structure factor and the eigenmodes of density fluctuations in the uniform liquid $3$He are studied using a novel non-perturbative approach.
The ab initio path integral Monte Carlo (PIMC) simulations provide crucial information on the system static properties.
arXiv Detail & Related papers (2023-01-24T16:16:08Z) - Universal features of entanglement entropy in the honeycomb Hubbard
model [44.99833362998488]
This paper introduces a new method to compute the R'enyi entanglement entropy in auxiliary-field quantum Monte Carlo simulations.
We demonstrate the efficiency of this method by extracting, for the first time, universal subleading logarithmic terms in a two dimensional model of interacting fermions.
arXiv Detail & Related papers (2022-11-08T15:52:16Z) - Slow semiclassical dynamics of a two-dimensional Hubbard model in
disorder-free potentials [77.34726150561087]
We show that introduction of harmonic and spin-dependent linear potentials sufficiently validates fTWA for longer times.
In particular, we focus on a finite two-dimensional system and show that at intermediate linear potential strength, the addition of a harmonic potential and spin dependence of the tilt, results in subdiffusive dynamics.
arXiv Detail & Related papers (2022-10-03T16:51:25Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Quantum chaos and thermalization in the two-mode Dicke model [77.34726150561087]
We discuss the onset of quantum chaos and thermalization in the two-mode Dicke model.
The two-mode Dicke model exhibits normal to superradiant quantum phase transition.
We show that the temporal fluctuations of the expectation value of the collective spin observable around its average are small and decrease with the effective system size.
arXiv Detail & Related papers (2022-07-08T11:16:29Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - Entanglement and correlations in fast collective neutrino flavor
oscillations [68.8204255655161]
Collective neutrino oscillations play a crucial role in transporting lepton flavor in astrophysical settings.
We study the full out-of-equilibrium flavor dynamics in simple multi-angle geometries displaying fast oscillations.
We present evidence that these fast collective modes are generated by the same dynamical phase transition.
arXiv Detail & Related papers (2022-03-05T17:00:06Z) - Floquet analysis of extended Rabi models based on high-frequency
expansion [4.825076503537852]
We transform two kinds of extended quantum Rabi model, anisotropic Rabi model and asymmetric Rabi model, into rotating frame.
For anisotropic Rabi model, the quasi energy fits well with the numerical results even when the rotating-wave coupling is in the deep-strong coupling regime.
For asymmetric Rabi model, the external bias field which breaks the parity symmetry of total excitation number tends to cluster the upper and lower branches into two bundles.
arXiv Detail & Related papers (2022-02-20T07:34:21Z) - Geometric phase in a dissipative Jaynes-Cummings model: theoretical
explanation for resonance robustness [68.8204255655161]
We compute the geometric phases acquired in both unitary and dissipative Jaynes-Cummings models.
In the dissipative model, the non-unitary effects arise from the outflow of photons through the cavity walls.
We show the geometric phase is robust, exhibiting a vanishing correction under a non-unitary evolution.
arXiv Detail & Related papers (2021-10-27T15:27:54Z) - Spontaneous Formation of Star-Shaped Surface Patterns in a Driven
Bose-Einstein Condensate [0.0]
Two-dimensional star-shaped patterns with $l$-fold symmetry, ranging from quadrupole to heptagon modes, are parametrically excited by modulating the scattering length near the Feshbach resonance.
Our work opens a new pathway for generating higher-lying collective excitations with applications.
arXiv Detail & Related papers (2021-05-20T14:46:28Z) - Tuning the topology of $p$-wave superconductivity in an analytically
solvable two-band model [0.0]
We introduce and solve a two-band model of spinless fermions with $p_x$-wave pairing on a square lattice.
We show that its phase diagram contains a topologically nontrivial weak pairing phase as well as a trivial strong pairing phase.
arXiv Detail & Related papers (2020-10-01T01:20:46Z) - Anisotropy-mediated reentrant localization [62.997667081978825]
We consider a 2d dipolar system, $d=2$, with the generalized dipole-dipole interaction $sim r-a$, and the power $a$ controlled experimentally in trapped-ion or Rydberg-atom systems.
We show that the spatially homogeneous tilt $beta$ of the dipoles giving rise to the anisotropic dipole exchange leads to the non-trivial reentrant localization beyond the locator expansion.
arXiv Detail & Related papers (2020-01-31T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.