論文の概要: Unveiling the Potential of Counterfactuals Explanations in Employability
- arxiv url: http://arxiv.org/abs/2305.10069v1
- Date: Wed, 17 May 2023 09:13:53 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-18 16:47:09.990127
- Title: Unveiling the Potential of Counterfactuals Explanations in Employability
- Title(参考訳): 雇用性における対実的説明の可能性を明らかにする
- Authors: Raphael Mazzine Barbosa de Oliveira, Sofie Goethals, Dieter Brughmans,
and David Martens
- Abstract要約: 本稿では,機械学習アルゴリズムに関わる雇用性関連問題に対して,その対策が適用可能であることを示す。
提示されたユースケースは、説明として反事実の応用以上のものだ。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In eXplainable Artificial Intelligence (XAI), counterfactual explanations are
known to give simple, short, and comprehensible justifications for complex
model decisions. However, we are yet to see more applied studies in which they
are applied in real-world cases. To fill this gap, this study focuses on
showing how counterfactuals are applied to employability-related problems which
involve complex machine learning algorithms. For these use cases, we use real
data obtained from a public Belgian employment institution (VDAB). The use
cases presented go beyond the mere application of counterfactuals as
explanations, showing how they can enhance decision support, comply with legal
requirements, guide controlled changes, and analyze novel insights.
- Abstract(参考訳): eXplainable Artificial Intelligence (XAI)では、カウンターファクトの説明は複雑なモデル決定に対して単純で短く、理解しやすい正当化を与えることが知られている。
しかし、現実のケースに応用される研究は、まだ多くは見受けられていない。
このギャップを埋めるため,本研究では,複雑な機械学習アルゴリズムを含む活用可能性に関わる問題に対して,反事実がいかに適用されるかを示す。
これらの場合、ベルギーの公共雇用機関(VDAB)から取得した実データを利用する。
提示されたユースケースは、意思決定支援の強化、法的要件の遵守、規制された変更のガイド、新しい洞察の分析など、単なる説明としての反事実の適用以上のものだ。
関連論文リスト
- Demystifying Reinforcement Learning in Production Scheduling via Explainable AI [0.7515066610159392]
深層強化学習(Dep Reinforcement Learning, DRL)はスケジューリング問題の解法としてよく用いられる手法である。
DRLエージェントは、短い計算時間で実行可能な結果を提供するのが得意だが、その推論はいまだに不透明である。
フロー生産における特殊DRLエージェントのスケジューリング決定の背後にある理由を説明するために,2つの説明可能なAI(xAI)フレームワークを適用した。
論文 参考訳(メタデータ) (2024-08-19T09:39:01Z) - Empowering Prior to Court Legal Analysis: A Transparent and Accessible Dataset for Defensive Statement Classification and Interpretation [5.646219481667151]
本稿では,裁判所の手続きに先立って,警察の面接中に作成された文の分類に適した新しいデータセットを提案する。
本稿では,直感的文と真偽を区別し,最先端のパフォーマンスを実現するための微調整DistilBERTモデルを提案する。
我々はまた、法律専門家と非専門主義者の両方がシステムと対話し、利益を得ることを可能にするXAIインターフェースも提示する。
論文 参考訳(メタデータ) (2024-05-17T11:22:27Z) - Introducing User Feedback-based Counterfactual Explanations (UFCE) [49.1574468325115]
対実的説明(CE)は、XAIで理解可能な説明を生成するための有効な解決策として浮上している。
UFCEは、アクション可能な機能のサブセットで最小限の変更を決定するために、ユーザー制約を含めることができる。
UFCEは、textitproximity(英語版)、textitsparsity(英語版)、textitfeasibility(英語版)の2つのよく知られたCEメソッドより優れている。
論文 参考訳(メタデータ) (2024-02-26T20:09:44Z) - Transparency challenges in policy evaluation with causal machine learning -- improving usability and accountability [0.0]
モデルがどのように見積を行うかを理解するには、グローバルに解釈可能な方法はない。
因果機械学習モデルが公正な方法で機能しているかどうかを理解するのは難しい。
本稿では,透明性の問題が公共政策評価アプリケーションにおける因果的機械学習の課題である理由を考察する。
論文 参考訳(メタデータ) (2023-10-20T02:48:29Z) - Individual Explanations in Machine Learning Models: A Case Study on
Poverty Estimation [63.18666008322476]
機械学習の手法は、敏感な社会的文脈でますます適用されつつある。
本研究の主な目的は2つある。
まず、これらの課題を公開し、関連性のある新しい説明方法の使用にどのように影響するか。
次に、関連するアプリケーションドメインで説明メソッドを実装する際に直面するような課題を軽減する一連の戦略を提示します。
論文 参考訳(メタデータ) (2021-04-09T01:54:58Z) - Individual Explanations in Machine Learning Models: A Survey for
Practitioners [69.02688684221265]
社会的関連性の高い領域の決定に影響を与える洗練された統計モデルの使用が増加しています。
多くの政府、機関、企業は、アウトプットが人間の解釈可能な方法で説明しにくいため、採用に消極的です。
近年,機械学習モデルに解釈可能な説明を提供する方法として,学術文献が多数提案されている。
論文 参考訳(メタデータ) (2021-04-09T01:46:34Z) - Decision Rule Elicitation for Domain Adaptation [93.02675868486932]
ヒトインザループ機械学習は、専門家からラベルを引き出すために人工知能(AI)で広く使用されています。
この作業では、専門家が意思決定を説明する決定ルールを作成できるようにします。
決定規則の適用はアルゴリズムのドメイン適応を改善し、専門家の知識をAIモデルに広めるのに役立つことを示す。
論文 参考訳(メタデータ) (2021-02-23T08:07:22Z) - Explainable Machine Learning for Public Policy: Use Cases, Gaps, and
Research Directions [6.68777133358979]
公共政策問題における説明可能性利用事例の分類法を開発する。
我々は、説明のエンドユーザーを定義し、説明可能性の具体的目標を満たさなければならない。
既存の作業をこれらのユースケースにマッピングし、ギャップを特定し、それらのギャップを埋めるための研究の方向性を提案します。
論文 参考訳(メタデータ) (2020-10-27T15:37:00Z) - Explainability in Deep Reinforcement Learning [68.8204255655161]
説明可能な強化学習(XRL)の実現に向けての最近の成果を概観する。
エージェントの振る舞いを正当化し、説明することが不可欠である重要な状況において、RLモデルのより良い説明可能性と解釈性は、まだブラックボックスと見なされているものの内部動作に関する科学的洞察を得るのに役立つ。
論文 参考訳(メタデータ) (2020-08-15T10:11:42Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
我々は、AIシステムの説明を実装可能な一般的なフレームワークの理論的基盤として、科学的説明の構造の概念をインスタンス化する。
このフレームワークは、AIシステムの"メンタルモデル"を構築するためのツールを提供することを目的としている。
論文 参考訳(メタデータ) (2020-03-02T10:32:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。