論文の概要: Demystifying Reinforcement Learning in Production Scheduling via Explainable AI
- arxiv url: http://arxiv.org/abs/2408.09841v2
- Date: Fri, 30 Aug 2024 10:28:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-02 17:38:32.983355
- Title: Demystifying Reinforcement Learning in Production Scheduling via Explainable AI
- Title(参考訳): 説明可能なAIによる生産スケジューリングにおける強化学習
- Authors: Daniel Fischer, Hannah M. Hüsener, Felix Grumbach, Lukas Vollenkemper, Arthur Müller, Pascal Reusch,
- Abstract要約: 深層強化学習(Dep Reinforcement Learning, DRL)はスケジューリング問題の解法としてよく用いられる手法である。
DRLエージェントは、短い計算時間で実行可能な結果を提供するのが得意だが、その推論はいまだに不透明である。
フロー生産における特殊DRLエージェントのスケジューリング決定の背後にある理由を説明するために,2つの説明可能なAI(xAI)フレームワークを適用した。
- 参考スコア(独自算出の注目度): 0.7515066610159392
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep Reinforcement Learning (DRL) is a frequently employed technique to solve scheduling problems. Although DRL agents ace at delivering viable results in short computing times, their reasoning remains opaque. We conduct a case study where we systematically apply two explainable AI (xAI) frameworks, namely SHAP (DeepSHAP) and Captum (Input x Gradient), to describe the reasoning behind scheduling decisions of a specialized DRL agent in a flow production. We find that methods in the xAI literature lack falsifiability and consistent terminology, do not adequately consider domain-knowledge, the target audience or real-world scenarios, and typically provide simple input-output explanations rather than causal interpretations. To resolve this issue, we introduce a hypotheses-based workflow. This approach enables us to inspect whether explanations align with domain knowledge and match the reward hypotheses of the agent. We furthermore tackle the challenge of communicating these insights to third parties by tailoring hypotheses to the target audience, which can serve as interpretations of the agent's behavior after verification. Our proposed workflow emphasizes the repeated verification of explanations and may be applicable to various DRL-based scheduling use cases.
- Abstract(参考訳): 深層強化学習(Dep Reinforcement Learning, DRL)はスケジューリング問題の解法としてよく用いられる手法である。
DRLエージェントは、短い計算時間で実行可能な結果を提供するのが得意だが、その推論はいまだに不透明である。
我々は、フロー生産における特殊なDRLエージェントのスケジューリング決定の背後にある理由を説明するために、2つの説明可能なAI(xAI)フレームワーク、すなわちSHAP(DeepSHAP)とCaptum(Input x Gradient)を体系的に適用するケーススタディを行う。
我々は,xAI文献の手法にはファリシフィビリティや一貫した用語が欠如しており,ドメイン知識や対象のオーディエンス,現実のシナリオを十分に考慮しておらず,典型的には因果解釈よりも単純なインプット・アウトプットの説明を提供する。
この問題を解決するために,仮説に基づくワークフローを導入する。
このアプローチにより、説明がドメイン知識と一致しているかを検証し、エージェントの報酬仮説に合致する。
さらに,これらの知見を第三者に伝達する上で,対象者に対する仮説を調整し,検証後のエージェントの行動の解釈として機能させることが課題である。
提案するワークフローでは,説明の繰り返しの検証が強調され,DRLに基づくスケジューリングのユースケースにも適用可能である。
関連論文リスト
- Semifactual Explanations for Reinforcement Learning [1.5320737596132754]
強化学習(Reinforcement Learning、RL)は、エージェントが試行錯誤を通じて環境から学習する学習パラダイムである。
ディープ強化学習(DRL)アルゴリズムは、ニューラルネットワークを使用してエージェントのポリシーを表現し、その決定を解釈しにくくする。
DRLエージェントの動作を説明するには,ユーザの信頼を向上し,エンゲージメントを高め,実際のタスクとの統合を容易にする必要がある。
論文 参考訳(メタデータ) (2024-09-09T08:37:47Z) - Analyzing Adversarial Inputs in Deep Reinforcement Learning [53.3760591018817]
本稿では, 正当性検証のレンズを用いて, 逆入力の特性を包括的に解析する。
このような摂動に対する感受性に基づいてモデルを分類するために、新しい計量である逆数率(Adversarial Rate)を導入する。
本分析は, 直交入力が所定のDRLシステムの安全性にどのように影響するかを実証的に示す。
論文 参考訳(メタデータ) (2024-02-07T21:58:40Z) - Learning Transferable Conceptual Prototypes for Interpretable
Unsupervised Domain Adaptation [79.22678026708134]
本稿では,Transferable Prototype Learning (TCPL) という,本質的に解釈可能な手法を提案する。
この目的を達成するために、ソースドメインからターゲットドメインにカテゴリの基本概念を転送する階層的なプロトタイプモジュールを設計し、基礎となる推論プロセスを説明するためにドメイン共有プロトタイプを学習する。
総合的な実験により,提案手法は有効かつ直感的な説明を提供するだけでなく,従来の最先端技術よりも優れていることが示された。
論文 参考訳(メタデータ) (2023-10-12T06:36:41Z) - Unveiling the Potential of Counterfactuals Explanations in Employability [0.0]
本稿では,機械学習アルゴリズムに関わる雇用性関連問題に対して,その対策が適用可能であることを示す。
提示されたユースケースは、説明として反事実の応用以上のものだ。
論文 参考訳(メタデータ) (2023-05-17T09:13:53Z) - GANterfactual-RL: Understanding Reinforcement Learning Agents'
Strategies through Visual Counterfactual Explanations [0.7874708385247353]
本稿では,RLエージェントの反実的説明を生成する手法を提案する。
本手法は完全にモデルに依存しないので,いくつかの計算量において,従来の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-02-24T15:29:43Z) - Explainable Data-Driven Optimization: From Context to Decision and Back
Again [76.84947521482631]
データ駆動最適化では、コンテキスト情報と機械学習アルゴリズムを使用して、不確実なパラメータによる決定問題の解決策を見つける。
本稿では,データ駆動型問題に対する解法を説明するために,対実的説明手法を提案する。
在庫管理やルーティングといった運用管理における重要な問題を説明することで,我々のアプローチを実証する。
論文 参考訳(メタデータ) (2023-01-24T15:25:16Z) - Redefining Counterfactual Explanations for Reinforcement Learning:
Overview, Challenges and Opportunities [2.0341936392563063]
AIのほとんどの説明方法は、開発者とエキスパートユーザーに焦点を当てている。
ブラックボックスモデルの出力が変更されるための入力で何が変更されるのかについて、カウンターファクトな説明がユーザにアドバイスします。
カウンターファクトはユーザフレンドリで、AIシステムから望ましいアウトプットを達成するための実行可能なアドバイスを提供する。
論文 参考訳(メタデータ) (2022-10-21T09:50:53Z) - Explainable Reinforcement Learning via Model Transforms [18.385505289067023]
基礎となるマルコフ決定プロセスが完全には分かっていないとしても、それにもかかわらず、自動的に説明を生成するために利用することができる、と我々は主張する。
本稿では,従来の文献で最適ポリシー探索の高速化に用いられていた形式的MDP抽象化と変換を用いて,説明を自動的に生成することを提案する。
論文 参考訳(メタデータ) (2022-09-24T13:18:06Z) - Inverse Online Learning: Understanding Non-Stationary and Reactionary
Policies [79.60322329952453]
エージェントが意思決定を行う方法の解釈可能な表現を開発する方法を示す。
一連の軌跡に基づく意思決定プロセスを理解することにより,このオンライン学習問題に対して,政策推論問題を逆問題とみなした。
本稿では、エージェントがそれらを更新するプロセスと並行して、その影響を遡及的に推定する実用的なアルゴリズムを提案する。
UNOSの臓器提供受諾決定の分析に応用することで、我々のアプローチは意思決定プロセスを管理する要因や時間とともにどのように変化するかに、貴重な洞察をもたらすことができることを実証する。
論文 参考訳(メタデータ) (2022-03-14T17:40:42Z) - Decision Rule Elicitation for Domain Adaptation [93.02675868486932]
ヒトインザループ機械学習は、専門家からラベルを引き出すために人工知能(AI)で広く使用されています。
この作業では、専門家が意思決定を説明する決定ルールを作成できるようにします。
決定規則の適用はアルゴリズムのドメイン適応を改善し、専門家の知識をAIモデルに広めるのに役立つことを示す。
論文 参考訳(メタデータ) (2021-02-23T08:07:22Z) - Explainability in Deep Reinforcement Learning [68.8204255655161]
説明可能な強化学習(XRL)の実現に向けての最近の成果を概観する。
エージェントの振る舞いを正当化し、説明することが不可欠である重要な状況において、RLモデルのより良い説明可能性と解釈性は、まだブラックボックスと見なされているものの内部動作に関する科学的洞察を得るのに役立つ。
論文 参考訳(メタデータ) (2020-08-15T10:11:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。