論文の概要: SLiC-HF: Sequence Likelihood Calibration with Human Feedback
- arxiv url: http://arxiv.org/abs/2305.10425v1
- Date: Wed, 17 May 2023 17:57:10 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-18 14:23:16.690216
- Title: SLiC-HF: Sequence Likelihood Calibration with Human Feedback
- Title(参考訳): SLiC-HF:ヒトフィードバックを用いたシーケンス類似校正
- Authors: Yao Zhao, Rishabh Joshi, Tianqi Liu, Misha Khalman, Mohammad Saleh,
Peter J. Liu
- Abstract要約: 最近導入されたSequence Likelihood(SLiC)は、人間の嗜好から効果的に学習できることを示す。
TL;DR要約タスクの実験により、SLiC-HFは教師付き微調整ベースラインを大幅に改善することが示された。
- 参考スコア(独自算出の注目度): 35.74135968442311
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning from human feedback has been shown to be effective at aligning
language models with human preferences. Past work has often relied on
Reinforcement Learning from Human Feedback (RLHF), which optimizes the language
model using reward scores assigned from a reward model trained on human
preference data. In this work we show how the recently introduced Sequence
Likelihood Calibration (SLiC), can also be used to effectively learn from human
preferences (SLiC-HF). Furthermore, we demonstrate this can be done with human
feedback data collected for a different model, similar to off-policy, offline
RL data. Automatic and human evaluation experiments on the TL;DR summarization
task show that SLiC-HF significantly improves supervised fine-tuning baselines.
Furthermore, SLiC-HF presents a competitive alternative to the PPO RLHF
implementation used in past work while being much simpler to implement, easier
to tune and more computationally efficient in practice.
- Abstract(参考訳): 人間のフィードバックから学ぶことは、言語モデルを人間の好みに合わせるのに効果的であることが示されている。
RLHF(Reinforcement Learning from Human Feedback)は、人間の嗜好データに基づいてトレーニングされた報酬モデルから割り当てられた報酬スコアを使用して、言語モデルを最適化する。
本研究では、最近導入されたSequence Likelihood Calibration(SLiC)を用いて、人間の嗜好(SLiC-HF)を効果的に学習する方法を示す。
さらに、これは、オフラインのRLデータと同様に、異なるモデルのために収集された人間のフィードバックデータで実現可能であることを実証する。
TL;DR要約タスクの自動評価実験により、SLiC-HFは教師付き微調整ベースラインを大幅に改善することが示された。
さらに、SLiC-HFは、過去の作業で使われたPPO RLHFの実装に対抗して、実装がずっと簡単で、チューニングが容易で、実際により計算的に効率的である。
関連論文リスト
- Self-Evolved Reward Learning for LLMs [45.6910747154447]
RLHF(Reinforcement Learning from Human Feedback)は、言語モデルと人間の嗜好を整合させる重要な手法である。
本稿では、RMが反復的に自己改善するための追加のトレーニングデータを生成する新しいアプローチである自己進化リワード学習(SER:Self-Evolved Reward Learning)を提案する。
以上の結果から,人間による注釈付きデータであっても,自己フィードバックから学習することで,RM性能が向上することが示唆された。
論文 参考訳(メタデータ) (2024-11-01T07:29:03Z) - How to Evaluate Reward Models for RLHF [51.31240621943791]
我々は、RLHF(Reinforcement Learning from Human Feedback)を通して強力な言語モデルを生成する能力を定量化する報酬モデルのための新しいベンチマークを導入する。
我々は,プロキシタスクの報酬モデルを評価することにより,下流LLM性能の予測モデルを構築した。
大規模クラウドソースによる人選好プラットフォーム上でのエンドツーエンドのRLHF実験をローンチした。
論文 参考訳(メタデータ) (2024-10-18T21:38:21Z) - Improving Reinforcement Learning from Human Feedback with Efficient Reward Model Ensemble [67.4269821365504]
人間のフィードバックからの強化学習(Reinforcement Learning from Human Feedback, RLHF)は、大きな言語モデルと人間の価値を整合させる手法として広く採用されている。
しかし、RLHFは限られた量の人間の嗜好データで訓練された報酬モデルに依存している。
報奨モデルによりより正確な予測が可能となる報奨アンサンブル法を提案する。
論文 参考訳(メタデータ) (2024-01-30T00:17:37Z) - Iterative Data Smoothing: Mitigating Reward Overfitting and
Overoptimization in RLHF [79.98542868281471]
強化学習(Reinforcement Learning from Human Feedback, RLHF)は、言語モデルを人間中心の値と密接に整合させる手法である。
学習した報奨モデルに対して過度に最適化すると、最終的には真の目的が損なわれることが観察された。
本稿では、これらの問題を考察し、「Iterative Data Smoothing」(IDS)と呼ばれる改良された報酬学習アルゴリズムの設計に理論的知見を活用する。
論文 参考訳(メタデータ) (2024-01-29T17:43:42Z) - Sample Efficient Reinforcement Learning from Human Feedback via Active
Exploration [29.935758027209292]
予測に基づくフィードバックは、強化学習における多くのアプリケーションにとって重要である。
本研究は,人間のフィードバックを得るために文脈を選択することができるという事実を生かしている。
提案手法は,複数のベースラインよりも人間の好みのサンプルが少ない場合に,より優れた性能が得られることを示す。
論文 参考訳(メタデータ) (2023-12-01T00:54:02Z) - Contrastive Preference Learning: Learning from Human Feedback without RL [71.77024922527642]
本稿では、報酬関数を学習せずに好みから最適なポリシーを学習するアルゴリズムであるContrastive Preference Learning (CPL)を紹介する。
CPLは完全に非政治的であり、単純なコントラスト目的のみを使用し、任意のMDPに適用できる。
論文 参考訳(メタデータ) (2023-10-20T16:37:56Z) - Direct Preference Optimization: Your Language Model is Secretly a Reward Model [119.65409513119963]
本稿では,RLHFにおける報酬モデルの新たなパラメータ化について紹介する。
DPO(Direct Preference Optimization)と呼ばれる結果のアルゴリズムは、安定的で、性能が高く、計算的にも軽量である。
我々の実験は、DPOが人間の好みに合わせて微調整できるだけでなく、既存の方法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-05-29T17:57:46Z) - RRHF: Rank Responses to Align Language Models with Human Feedback
without tears [69.68672043223249]
InstructGPTは、SFT(Supervised Fine-Tuning)、報酬モデルトレーニング、PPO(Proximal Policy Optimization)など、いくつかの段階を通じてRLHFを実装している。
本稿では,条件付き確率の対数を用いて,異なるソースからのサンプル応答をスコアするRRHFという新しい学習パラダイムを提案する。
我々は、Helpful and Harmlessデータセット上でRRHFを評価し、報酬モデルスコアと人間ラベルによるPPOと同等のアライメント性能を示す。
論文 参考訳(メタデータ) (2023-04-11T15:53:40Z) - Training a Helpful and Harmless Assistant with Reinforcement Learning
from Human Feedback [8.409764908043396]
人からのフィードバックからの好みのモデリングと強化学習を微調整言語モデルに適用し、補助的アシスタントとして機能させる。
このアライメントトレーニングにより,ほぼすべてのNLP評価の性能が向上することがわかった。
オンライントレーニングの反復的なモードについて検討し、人間のフィードバックデータを用いて毎週のケイデンスで好みモデルとRLポリシーを更新する。
論文 参考訳(メタデータ) (2022-04-12T15:02:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。