論文の概要: Self-Evolved Reward Learning for LLMs
- arxiv url: http://arxiv.org/abs/2411.00418v1
- Date: Fri, 01 Nov 2024 07:29:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:50:29.948405
- Title: Self-Evolved Reward Learning for LLMs
- Title(参考訳): LLMのための自己進化型リワード学習
- Authors: Chenghua Huang, Zhizhen Fan, Lu Wang, Fangkai Yang, Pu Zhao, Zeqi Lin, Qingwei Lin, Dongmei Zhang, Saravan Rajmohan, Qi Zhang,
- Abstract要約: RLHF(Reinforcement Learning from Human Feedback)は、言語モデルと人間の嗜好を整合させる重要な手法である。
本稿では、RMが反復的に自己改善するための追加のトレーニングデータを生成する新しいアプローチである自己進化リワード学習(SER:Self-Evolved Reward Learning)を提案する。
以上の結果から,人間による注釈付きデータであっても,自己フィードバックから学習することで,RM性能が向上することが示唆された。
- 参考スコア(独自算出の注目度): 45.6910747154447
- License:
- Abstract: Reinforcement Learning from Human Feedback (RLHF) is a crucial technique for aligning language models with human preferences, playing a pivotal role in the success of conversational models like GPT-4, ChatGPT, and Llama 2. A core challenge in employing RLHF lies in training a reliable reward model (RM), which relies on high-quality labels typically provided by human experts or advanced AI system. These methods can be costly and may introduce biases that affect the language model's responses. As language models improve, human input may become less effective in further enhancing their performance. In this paper, we propose Self-Evolved Reward Learning (SER), a novel approach where the RM generates additional training data to iteratively improve itself. We conducted extensive experiments on multiple datasets such as HH-RLHF and UltraFeedback, using models like Mistral and Llama 3, and compare SER against various baselines. Our results demonstrate that even with limited human-annotated data, learning from self-feedback can robustly enhance RM performance, thereby boosting the capabilities of large language models (LLMs).
- Abstract(参考訳): Reinforcement Learning from Human Feedback (RLHF)は、言語モデルと人間の嗜好を整合させる重要なテクニックであり、GPT-4、ChatGPT、Llama 2といった会話モデルの成功に重要な役割を果たす。
RLHFを採用する上での課題は、人間の専門家や高度なAIシステムが提供する高品質なラベルに依存する信頼性の高い報酬モデル(RM)のトレーニングにある。
これらの手法はコストがかかり、言語モデルの応答に影響を及ぼすバイアスをもたらす可能性がある。
言語モデルが改善されるにつれて、人間の入力はパフォーマンスをさらに向上するために効果が低下する可能性がある。
本稿では、RMが反復的に自己改善するために追加のトレーニングデータを生成する新しいアプローチである自己進化リワード学習(SER)を提案する。
我々は、MistralやLlama 3といったモデルを用いて、HH-RLHFやUltraFeedbackといった複数のデータセットについて広範な実験を行い、SERを様々なベースラインと比較した。
以上の結果から,自己フィードバックによる学習によってRM性能が向上し,大規模言語モデル(LLM)の性能が向上することが示唆された。
関連論文リスト
- Seeing Eye to AI: Human Alignment via Gaze-Based Response Rewards for Large Language Models [46.09562860220433]
暗黙のフィードバック(特に眼球追跡(ET)データ)をReward Model(RM)に統合する新しいフレームワークであるGazeRewardを紹介します。
提案手法は、確立された人間の嗜好データセット上でのRMの精度を大幅に向上させる。
論文 参考訳(メタデータ) (2024-10-02T13:24:56Z) - Prototypical Reward Network for Data-Efficient RLHF [17.220998116937444]
RLHF(Reinforcement Learning from Human Feedback)の報奨モデルが大規模言語モデル(LLM)の微調整に有効であることが証明された。
提案するフレームワークであるProto-RMは,人間からのフィードバックに制限された報酬モデルを改善するために,プロトタイプネットワークを活用している。
論文 参考訳(メタデータ) (2024-06-06T15:23:30Z) - RLHF Deciphered: A Critical Analysis of Reinforcement Learning from Human Feedback for LLMs [49.386699863989335]
大きな言語モデル(LLM)を訓練し、人間の効果的なアシスタントとして機能させるには、慎重に検討する必要がある。
有望なアプローチとして、人間からのフィードバック(RLHF)からの強化学習がある。
本稿では、強化学習原理のレンズを通してRLHFを分析し、その基礎を理解する。
論文 参考訳(メタデータ) (2024-04-12T15:54:15Z) - Improving Reinforcement Learning from Human Feedback with Efficient Reward Model Ensemble [67.4269821365504]
人間のフィードバックからの強化学習(Reinforcement Learning from Human Feedback, RLHF)は、大きな言語モデルと人間の価値を整合させる手法として広く採用されている。
しかし、RLHFは限られた量の人間の嗜好データで訓練された報酬モデルに依存している。
報奨モデルによりより正確な予測が可能となる報奨アンサンブル法を提案する。
論文 参考訳(メタデータ) (2024-01-30T00:17:37Z) - Aligning Neural Machine Translation Models: Human Feedback in Training and Inference [27.84975767573212]
RLHF(Reinforcement Learning from Human feedback)は、言語モデルによって生成されたテキストの品質を向上させる技術である。
人間のアノテーションからトレーニングされたメトリクスを報酬モデルとして容易に利用できる機械翻訳(MT)では、最小ベイズリスクデコーディングと再ランクを用いた手法が最終品質の向上に成功している。
論文 参考訳(メタデータ) (2023-11-15T17:21:58Z) - SALMON: Self-Alignment with Instructable Reward Models [80.83323636730341]
本稿では,基本言語モデルと人間の監督を最小限に整合させる新しいアプローチ,すなわちSALMONを提案する。
私たちはDromedary-2という名のAIアシスタントを開発しており、コンテキスト内学習には6つの例と31の人間定義原則しかありません。
論文 参考訳(メタデータ) (2023-10-09T17:56:53Z) - Enabling Language Models to Implicitly Learn Self-Improvement [49.16868302881804]
大規模言語モデル(LLM)は、オープンエンドテキスト生成タスクにおいて顕著な機能を示した。
我々は、人間の嗜好データから改善目標を暗黙的に学習するImPlicit Self-ImprovemenT(PIT)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-02T04:29:40Z) - SLiC-HF: Sequence Likelihood Calibration with Human Feedback [35.74135968442311]
最近導入されたSequence Likelihood(SLiC)は、人間の嗜好から効果的に学習できることを示す。
TL;DR要約タスクの実験により、SLiC-HFは教師付き微調整ベースラインを大幅に改善することが示された。
論文 参考訳(メタデータ) (2023-05-17T17:57:10Z) - Fine-tuning Language Models with Generative Adversarial Reward Modelling [30.424363135421917]
RLHF(Reinforcement Learning with Human Feedback)は、大規模言語モデル(LLM)の性能を大幅に向上させることが実証されている。
我々は、RLHFとSFTに対するRLGAF(Reinforcement Learning with Generative Adversarial Feedback)という別のアプローチを提案する。
論文 参考訳(メタデータ) (2023-05-09T17:06:06Z) - RRHF: Rank Responses to Align Language Models with Human Feedback
without tears [69.68672043223249]
InstructGPTは、SFT(Supervised Fine-Tuning)、報酬モデルトレーニング、PPO(Proximal Policy Optimization)など、いくつかの段階を通じてRLHFを実装している。
本稿では,条件付き確率の対数を用いて,異なるソースからのサンプル応答をスコアするRRHFという新しい学習パラダイムを提案する。
我々は、Helpful and Harmlessデータセット上でRRHFを評価し、報酬モデルスコアと人間ラベルによるPPOと同等のアライメント性能を示す。
論文 参考訳(メタデータ) (2023-04-11T15:53:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。