論文の概要: Revisiting Long-term Time Series Forecasting: An Investigation on Linear
Mapping
- arxiv url: http://arxiv.org/abs/2305.10721v1
- Date: Thu, 18 May 2023 05:39:46 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-19 16:53:38.605134
- Title: Revisiting Long-term Time Series Forecasting: An Investigation on Linear
Mapping
- Title(参考訳): 時系列予測の再検討:線形マッピングの検討
- Authors: Zhe Li, Shiyi Qi, Yiduo Li, Zenglin Xu
- Abstract要約: 単一の線形層は、他の複雑なアーキテクチャと比較して競争力のある予測性能を達成することができる。
RevIN(Reversible normalization)とCI(Channel Independent)は、全体的な予測パフォーマンスを改善する上で重要な役割を担います。
- 参考スコア(独自算出の注目度): 16.112801440634378
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Long-term time series forecasting has gained significant attention in recent
years. While there are various specialized designs for capturing temporal
dependency, previous studies have demonstrated that a single linear layer can
achieve competitive forecasting performance compared to other complex
architectures. In this paper, we thoroughly investigate the intrinsic
effectiveness of recent approaches and make three key observations: 1) linear
mapping is critical to prior long-term time series forecasting efforts; 2)
RevIN (reversible normalization) and CI (Channel Independent) play a vital role
in improving overall forecasting performance; and 3) linear mapping can
effectively capture periodic features in time series and has robustness for
different periods across channels when increasing the input horizon. We provide
theoretical and experimental explanations to support our findings and also
discuss the limitations and future works. Our framework's code is available at
\url{https://github.com/plumprc/RTSF}.
- Abstract(参考訳): 近年,長期の時系列予測が注目されている。
時間依存を捉えるための特別な設計はいくつかあるが、以前の研究では、1つの線形層が他の複雑なアーキテクチャと比較して競合予測性能を達成できることが示されている。
本稿では,近年のアプローチの本質的効果を徹底的に検討し,3つの重要な観察を行った。
1) 線形マッピングは,事前の長期時系列予測に不可欠である。
2)RevIN(可逆正規化)とCI(チャンネル独立)は、全体的な予測性能を改善する上で重要な役割を果たす。
3) 線形写像は, 時系列の周期的特徴を効果的に捉え, 入力地平線を増大させる際に, チャネル間の異なる周期の堅牢性を有する。
本研究の成果を裏付ける理論的・実験的説明と,その限界と今後の課題について論じる。
私たちのフレームワークのコードは \url{https://github.com/plumprc/RTSF} で利用可能です。
関連論文リスト
- Introducing Spectral Attention for Long-Range Dependency in Time Series Forecasting [8.458068118782519]
最近の線形および変圧器ベースの予測器は時系列予測において優れた性能を示している。
時系列データにおける長距離依存関係を効果的に扱うことができないという点で制約されている。
本稿では,試料間の時間的相関を保った高速かつ効果的なスペクトル注意機構を提案する。
論文 参考訳(メタデータ) (2024-10-28T06:17:20Z) - Deep End-to-End Survival Analysis with Temporal Consistency [49.77103348208835]
本稿では,大規模長手データの処理を効率的に行うために,Survival Analysisアルゴリズムを提案する。
我々の手法における中心的な考え方は、時間とともにデータにおける過去と将来の成果が円滑に進化するという仮説である時間的一貫性である。
我々のフレームワークは、安定したトレーニング信号を提供することで、時間的一貫性を大きなデータセットに独自に組み込む。
論文 参考訳(メタデータ) (2024-10-09T11:37:09Z) - Learning Graph Structures and Uncertainty for Accurate and Calibrated Time-series Forecasting [65.40983982856056]
本稿では,時系列間の相関を利用して時系列間の構造を学習し,精度の高い正確な予測を行うSTOICを紹介する。
幅広いベンチマークデータセットに対して、STOICは16%の精度とキャリブレーションのよい予測を提供する。
論文 参考訳(メタデータ) (2024-07-02T20:14:32Z) - Multi-Scale Dilated Convolution Network for Long-Term Time Series Forecasting [17.132063819650355]
時系列の周期と傾向を捉えるために,MSDCN(Multi Scale Dilated Convolution Network)を提案する。
指数関数的に増加する拡張と異なるカーネルサイズを持つ異なる畳み込みブロックを設計し、異なるスケールで時系列データをサンプリングする。
提案手法の有効性を検証するため,8つの長期時系列予測ベンチマークデータセットを用いて実験を行った。
論文 参考訳(メタデータ) (2024-05-09T02:11:01Z) - Adapting to Length Shift: FlexiLength Network for Trajectory Prediction [53.637837706712794]
軌道予測は、自律運転、ロボット工学、シーン理解など、様々な応用において重要な役割を果たしている。
既存のアプローチは主に、一般に標準入力時間を用いて、公開データセットの予測精度を高めるために、コンパクトなニューラルネットワークの開発に重点を置いている。
本稿では,様々な観測期間に対する既存の軌道予測の堅牢性を高めるための,汎用的で効果的なフレームワークFlexiLength Network(FLN)を紹介する。
論文 参考訳(メタデータ) (2024-03-31T17:18:57Z) - CARD: Channel Aligned Robust Blend Transformer for Time Series
Forecasting [50.23240107430597]
本稿では,CARD(Channel Aligned Robust Blend Transformer)という特殊なトランスを設計する。
まず、CARDはチャネルに沿ったアテンション構造を導入し、信号間の時間的相関をキャプチャする。
第二に、マルチスケール知識を効率的に活用するために、異なる解像度のトークンを生成するトークンブレンドモジュールを設計する。
第3に,潜在的な過度な問題を軽減するため,時系列予測のためのロバストな損失関数を導入する。
論文 参考訳(メタデータ) (2023-05-20T05:16:31Z) - Mlinear: Rethink the Linear Model for Time-series Forecasting [9.841293660201261]
Mlinearは、主に線形層に基づく単純だが効果的な方法である。
複数のデータセット上で広く使われている平均二乗誤差(MSE)を大幅に上回る新しい損失関数を導入する。
提案手法は,PatchTSTを336列長入力で21:3,512列長入力で29:10で有意に上回った。
論文 参考訳(メタデータ) (2023-05-08T15:54:18Z) - The Capacity and Robustness Trade-off: Revisiting the Channel
Independent Strategy for Multivariate Time Series Forecasting [50.48888534815361]
本稿では、Channel Dependent(CD)戦略でトレーニングされたモデルが、Channel Dependent(CD)戦略でトレーニングされたモデルよりも優れていることを示す。
以上の結果から,CD手法は高いキャパシティを持つが,分散ドリフト時系列を正確に予測する堅牢性に欠けることがわかった。
本稿では,CI戦略を超越した正規化(PRReg)による予測残差法(Predict Residuals with Regularization, PRReg)を提案する。
論文 参考訳(メタデータ) (2023-04-11T13:15:33Z) - Respecting Time Series Properties Makes Deep Time Series Forecasting
Perfect [3.830797055092574]
時系列予測モデルにおいて、時間的特徴をどのように扱うかが重要な問題である。
本稿では,3つの有意だが未確立の深層時系列予測機構を厳密に分析する。
上記の分析に基づいて,新しい時系列予測ネットワーク,すなわちRTNetを提案する。
論文 参考訳(メタデータ) (2022-07-22T08:34:31Z) - DEPTS: Deep Expansion Learning for Periodic Time Series Forecasting [83.60876685008225]
PTS予測のための深層拡張学習フレームワークDEPTSを導入する。
DEPTSは、周期状態を隠れ変数として導入することで、分離された定式化から始まる。
我々の2つのカスタマイズされたモジュールは、局所的なモーメントまたはグローバルな周期性に予測を帰属させるなど、ある程度の解釈可能な能力を持っている。
論文 参考訳(メタデータ) (2022-03-15T06:51:58Z) - Two-Stage Framework for Seasonal Time Series Forecasting [9.359683664929957]
季節の時系列予測は、季節性からの長期依存のために挑戦的な問題のままです。
季節の時系列を予測できる2段階フレームワークを提案する。
本研究では,第1段階で生成した中間結果を既存の予測モデルに組み込むことで,予測性能を効果的に向上できることを示す。
論文 参考訳(メタデータ) (2021-03-03T02:53:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。