論文の概要: How Deep Learning Sees the World: A Survey on Adversarial Attacks &
Defenses
- arxiv url: http://arxiv.org/abs/2305.10862v1
- Date: Thu, 18 May 2023 10:33:28 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-19 15:43:57.923180
- Title: How Deep Learning Sees the World: A Survey on Adversarial Attacks &
Defenses
- Title(参考訳): ディープラーニングが世界をどのように見ているか: 敵の攻撃と防御に関する調査
- Authors: Joana C. Costa and Tiago Roxo and Hugo Proen\c{c}a and Pedro R. M.
In\'acio
- Abstract要約: 本稿では、攻撃能力によってグループ化された最新の敵攻撃と、防御戦略によってクラスタ化された現代の防御をコンパイルする。
また、視覚変換器に関する新たな進歩を提示し、敵対的設定の文脈で使用されるデータセットとメトリクスを要約し、異なる攻撃下での最先端の結果を比較し、オープンな問題の特定で終了する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Deep Learning is currently used to perform multiple tasks, such as object
recognition, face recognition, and natural language processing. However, Deep
Neural Networks (DNNs) are vulnerable to perturbations that alter the network
prediction (adversarial examples), raising concerns regarding its usage in
critical areas, such as self-driving vehicles, malware detection, and
healthcare. This paper compiles the most recent adversarial attacks, grouped by
the attacker capacity, and modern defenses clustered by protection strategies.
We also present the new advances regarding Vision Transformers, summarize the
datasets and metrics used in the context of adversarial settings, and compare
the state-of-the-art results under different attacks, finishing with the
identification of open issues.
- Abstract(参考訳): Deep Learningは現在、オブジェクト認識、顔認識、自然言語処理などの複数のタスクを実行するために使用されている。
しかし、ディープニューラルネットワーク(Deep Neural Networks, DNN)は、ネットワーク予測を変更する摂動に弱いため、自動運転車やマルウェア検出、医療といった重要な領域での使用に対する懸念が高まる。
本稿は,攻撃能力によってグループ化された最新の敵攻撃と,防御戦略によって集団化された現代の防御をまとめる。
また,視覚トランスフォーマーに関する新たな進歩を提示するとともに,逆境設定の文脈で使用されるデータセットとメトリクスを要約するとともに,異なる攻撃下での最先端結果の比較を行い,オープンイシューの識別を終える。
関連論文リスト
- Adversarial Attacks of Vision Tasks in the Past 10 Years: A Survey [21.4046846701173]
敵対的攻撃は、機械学習推論中に重大なセキュリティ脅威を引き起こす。
既存のレビューは、しばしば攻撃分類に焦点を合わせ、包括的で詳細な分析を欠いている。
本稿は、従来のLVLM攻撃とLVLM攻撃の包括的概要を提供することによって、これらのギャップに対処する。
論文 参考訳(メタデータ) (2024-10-31T07:22:51Z) - A Survey on Transferability of Adversarial Examples across Deep Neural Networks [53.04734042366312]
逆の例では、機械学習モデルを操作して誤った予測を行うことができます。
敵の例の転送可能性により、ターゲットモデルの詳細な知識を回避できるブラックボックス攻撃が可能となる。
本研究は, 対角移動可能性の展望を考察した。
論文 参考訳(メタデータ) (2023-10-26T17:45:26Z) - Investigating Human-Identifiable Features Hidden in Adversarial
Perturbations [54.39726653562144]
我々の研究では、最大5つの攻撃アルゴリズムを3つのデータセットにわたって探索する。
対人摂動における人間の識別可能な特徴を同定する。
画素レベルのアノテーションを用いて、そのような特徴を抽出し、ターゲットモデルに妥協する能力を実証する。
論文 参考訳(メタデータ) (2023-09-28T22:31:29Z) - A reading survey on adversarial machine learning: Adversarial attacks
and their understanding [6.1678491628787455]
Adversarial Machine Learningは、ニューラルネットワークがほぼオリジナルの入力を誤って分類する原因となる脆弱性を悪用し、理解する。
敵攻撃と呼ばれるアルゴリズムのクラスが提案され、ニューラルネットワークが異なるドメインの様々なタスクを誤って分類する。
本稿は、既存の敵攻撃とその理解について、異なる視点で調査する。
論文 参考訳(メタデータ) (2023-08-07T07:37:26Z) - Adversarial Attacks and Defenses in Machine Learning-Powered Networks: A
Contemporary Survey [114.17568992164303]
機械学習とディープニューラルネットワークにおけるアドリアックと防御が注目されている。
本調査は、敵攻撃・防衛技術分野における最近の進歩を包括的に概観する。
検索ベース、意思決定ベース、ドロップベース、物理世界攻撃など、新たな攻撃方法も検討されている。
論文 参考訳(メタデータ) (2023-03-11T04:19:31Z) - Deviations in Representations Induced by Adversarial Attacks [0.0]
研究によると、ディープラーニングモデルは敵の攻撃に弱い。
この発見は研究の新たな方向性をもたらし、脆弱性のあるネットワークを攻撃して防御するためにアルゴリズムが開発された。
本稿では,敵攻撃によって引き起こされる表現の偏差を計測し,解析する手法を提案する。
論文 参考訳(メタデータ) (2022-11-07T17:40:08Z) - Physical Adversarial Attack meets Computer Vision: A Decade Survey [55.38113802311365]
本稿では,身体的敵意攻撃の概要を概観する。
本研究は,身体的敵意攻撃の性能を体系的に評価する第一歩を踏み出した。
提案する評価基準であるhiPAAは6つの視点から構成される。
論文 参考訳(メタデータ) (2022-09-30T01:59:53Z) - Searching for an Effective Defender: Benchmarking Defense against
Adversarial Word Substitution [83.84968082791444]
ディープニューラルネットワークは、意図的に構築された敵の例に対して脆弱である。
ニューラルNLPモデルに対する敵対的単語置換攻撃を防御する様々な方法が提案されている。
論文 参考訳(メタデータ) (2021-08-29T08:11:36Z) - Adversarial Machine Learning for Cybersecurity and Computer Vision:
Current Developments and Challenges [2.132096006921048]
敵対的機械学習の研究は、機械学習技術の幅広い応用に対する重大な脅威に対処する。
まず、主に3つの機械学習テクニックに対する攻撃、すなわち中毒攻撃、回避攻撃、プライバシ攻撃について論じる。
サイバーセキュリティとコンピュータビジョンにおける敵のサンプルは根本的に異なることに気付きます。
論文 参考訳(メタデータ) (2021-06-30T03:05:58Z) - Explainable Adversarial Attacks in Deep Neural Networks Using Activation
Profiles [69.9674326582747]
本稿では,敵対的事例に基づくニューラルネットワークモデルを検討するためのビジュアルフレームワークを提案する。
これらの要素を観察することで、モデル内の悪用領域を素早く特定できることを示す。
論文 参考訳(メタデータ) (2021-03-18T13:04:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。