Energy-Consumption Advantage of Quantum Computation
- URL: http://arxiv.org/abs/2305.11212v3
- Date: Tue, 04 Feb 2025 09:19:14 GMT
- Title: Energy-Consumption Advantage of Quantum Computation
- Authors: Florian Meier, Hayata Yamasaki,
- Abstract summary: We introduce a general framework for studying the energy consumption of quantum and classical computation.
We rigorously prove that quantum computation achieves an exponential energy-consumption advantage over classical computation.
- Score: 1.918334858770111
- License:
- Abstract: Energy consumption in solving computational problems has been gaining growing attention as one of the key performance measures for computers. Quantum computation is known to offer advantages over classical computation in terms of various computational resources; however, proving its energy-consumption advantage has been challenging due to the lack of a theoretical foundation linking the physical concept of energy with the computer-scientific notion of complexity for quantum computation. To bridge this gap, we introduce a general framework for studying the energy consumption of quantum and classical computation, based on a computational model conventionally used for studying query complexity in computational complexity theory. Within this framework, we derive an upper bound for the achievable energy consumption of quantum computation, accounting for imperfections in implementation appearing in practice. As part of this analysis, we construct a protocol for Landauer erasure with finite precision in a finite number of steps, which constitutes a contribution of independent interest. Additionally, we develop techniques for proving a nonzero lower bound of energy consumption of classical computation, based on the energy-conservation law and Landauer's principle. Using these general bounds, we rigorously prove that quantum computation achieves an exponential energy-consumption advantage over classical computation for solving a paradigmatic computational problem -- Simon's problem. Furthermore, we propose explicit criteria for experimentally demonstrating this energy-consumption advantage of quantum computation, analogous to the experimental demonstrations of quantum computational supremacy. These results establish a foundational framework and techniques to explore the energy consumption of computation, opening an alternative way to study the advantages of quantum computation.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Calculating the energy profile of an enzymatic reaction on a quantum computer [0.0]
Quantum computing provides a promising avenue toward enabling quantum chemistry calculations.
Recent research efforts are dedicated to developing and scaling algorithms for Noisy Intermediate-Scale Quantum (NISQ) devices.
arXiv Detail & Related papers (2024-08-20T18:00:01Z) - Towards Energetic Quantum Advantage in Trapped-Ion Quantum Computation [0.0]
In this work, one implementation of the quantum Fourier transform (QFT) algorithm in a trapped ion setup was studied.
The main focus was to obtain a theoretical characterization of the energetic costs of quantum computation.
A potential scaling of the energetic costs was argued and used to find a possible threshold for an energetic quantum advantage against state-of-the-art classical supercomputers.
arXiv Detail & Related papers (2024-04-17T17:14:53Z) - Potential Energy Advantage of Quantum Economy [8.458212440154389]
We study the energy benefits of quantum computing vis-a-vis classical computing.
We demonstrate quantum computing firms can outperform classical counterparts in both profitability and energy efficiency at Nash equilibrium.
arXiv Detail & Related papers (2023-08-15T20:30:52Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Perturbation theory with quantum signal processing [0.0]
We provide a quantum algorithm to obtain perturbative energies on quantum computers.
The proposed algorithm uses quantum signal processing (QSP) to achieve this goal.
This work is a first step towards explainable'' quantum simulation on fault-tolerant quantum computers.
arXiv Detail & Related papers (2022-10-03T05:20:26Z) - Evaluating the Convergence of Tabu Enhanced Hybrid Quantum Optimization [58.720142291102135]
We introduce the Tabu Enhanced Hybrid Quantum Optimization metaheuristic approach useful for optimization problem solving on a quantum hardware.
We address the theoretical convergence of the proposed scheme from the viewpoint of the collisions in the object which stores the tabu states, based on the Ising model.
arXiv Detail & Related papers (2022-09-05T07:23:03Z) - Resources for bosonic quantum computational advantage [0.0]
We show that every bosonic quantum computation can be recast into a continuous-variable sampling computation.
We derive a general classical algorithm for the strong simulation of bosonic computations.
arXiv Detail & Related papers (2022-07-24T17:50:20Z) - Reducing the cost of energy estimation in the variational quantum
eigensolver algorithm with robust amplitude estimation [50.591267188664666]
Quantum chemistry and materials is one of the most promising applications of quantum computing.
Much work is still to be done in matching industry-relevant problems in these areas with quantum algorithms that can solve them.
arXiv Detail & Related papers (2022-03-14T16:51:36Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - An Application of Quantum Annealing Computing to Seismic Inversion [55.41644538483948]
We apply a quantum algorithm to a D-Wave quantum annealer to solve a small scale seismic inversions problem.
The accuracy achieved by the quantum computer is at least as good as that of the classical computer.
arXiv Detail & Related papers (2020-05-06T14:18:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.