論文の概要: MTOP: A Comprehensive Multilingual Task-Oriented Semantic Parsing
Benchmark
- arxiv url: http://arxiv.org/abs/2008.09335v2
- Date: Wed, 27 Jan 2021 03:36:21 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-26 20:51:56.490502
- Title: MTOP: A Comprehensive Multilingual Task-Oriented Semantic Parsing
Benchmark
- Title(参考訳): MTOP: 総合的な多言語タスク指向セマンティックパーシングベンチマーク
- Authors: Haoran Li, Abhinav Arora, Shuohui Chen, Anchit Gupta, Sonal Gupta,
Yashar Mehdad
- Abstract要約: 我々はMTOPと呼ばれる新しい多言語データセットを提案し、11ドメインの6言語で100kの注釈付き発話を合成する。
既存の2つの多言語データセットに対して、Slot F1上の+6.3ポイントの平均的な改善を、実験で報告された最良の結果よりも達成する。
本稿では,事前学習モデルと自動翻訳とアライメントを組み合わせたゼロショット性能と,スロットラベル投影におけるノイズ低減のための遠隔監視手法を提案する。
- 参考スコア(独自算出の注目度): 31.91964553419665
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Scaling semantic parsing models for task-oriented dialog systems to new
languages is often expensive and time-consuming due to the lack of available
datasets. Available datasets suffer from several shortcomings: a) they contain
few languages b) they contain small amounts of labeled examples per language c)
they are based on the simple intent and slot detection paradigm for
non-compositional queries. In this paper, we present a new multilingual
dataset, called MTOP, comprising of 100k annotated utterances in 6 languages
across 11 domains. We use this dataset and other publicly available datasets to
conduct a comprehensive benchmarking study on using various state-of-the-art
multilingual pre-trained models for task-oriented semantic parsing. We achieve
an average improvement of +6.3 points on Slot F1 for the two existing
multilingual datasets, over best results reported in their experiments.
Furthermore, we demonstrate strong zero-shot performance using pre-trained
models combined with automatic translation and alignment, and a proposed
distant supervision method to reduce the noise in slot label projection.
- Abstract(参考訳): タスク指向ダイアログシステムを新しい言語にスケールするセマンティック解析モデルは、利用可能なデータセットがないため、しばしば高価で時間がかかります。
利用可能なデータセットにはいくつかの欠点がある。
a) 少数言語を含むもの
b) 言語ごとに少量のラベル付き例を含むもの
c) 非合成クエリに対する単純なインテントとスロット検出のパラダイムに基づいている。
本稿では,11領域にわたる6言語で100kの注釈付き発話からなるMTOPという新しい多言語データセットを提案する。
このデータセットと他の公開データセットを使用して、タスク指向セマンティック解析のために、様々な最先端の多言語事前学習モデルを用いた包括的なベンチマーク研究を行う。
既存の2つの多言語データセットに対して、Slot F1上の+6.3ポイントの平均的な改善を、実験で報告された最良の結果よりも達成する。
さらに,事前学習モデルと自動翻訳とアライメントを組み合わせたゼロショット性能と,スロットラベル投影におけるノイズ低減のための遠隔監視手法を提案する。
関連論文リスト
- P-MMEval: A Parallel Multilingual Multitask Benchmark for Consistent Evaluation of LLMs [84.24644520272835]
大きな言語モデル(LLM)は、翻訳、コード生成、推論といったタスクにまたがる様々な多言語機能を示す。
以前の評価では、その範囲を基本自然言語処理(NLP)や、独立した機能固有のタスクに制限することが多かった。
我々は、これらのベンチマークの有用性に関する以前の研究の監視に対処するため、大規模ベンチマークから利用可能な、合理的なベンチマークを選択するパイプラインを提案する。
本稿では,P-MMEvalを提案する。P-MMEval,P-MMEval,P-MMEval,P-MMEval,P-MMEval,P-MMEval。
論文 参考訳(メタデータ) (2024-11-14T01:29:36Z) - DeMuX: Data-efficient Multilingual Learning [57.37123046817781]
DEMUXは、大量の重複しない多言語データからラベルを付けるための正確なデータポイントを規定するフレームワークである。
エンドツーエンドのフレームワークは言語に依存しず、モデル表現を記述し、多言語的ターゲット設定をサポートしています。
論文 参考訳(メタデータ) (2023-11-10T20:09:08Z) - XTREME-UP: A User-Centric Scarce-Data Benchmark for Under-Represented
Languages [105.54207724678767]
データ不足は、多言語NLPシステムの開発において重要な問題である。
我々はXTREME-UPを提案する。XTREME-UPはゼロショットではなく、希少なデータシナリオに焦点を当てたベンチマークである。
XTREME-UPは、88言語にまたがる言語モデルが、9つのキーとなるユーザー中心技術上で機能する能力を評価する。
論文 参考訳(メタデータ) (2023-05-19T18:00:03Z) - MasakhaNEWS: News Topic Classification for African languages [15.487928928173098]
アフリカの言語は、いくつかのNLPタスクをカバーするデータセットが欠如しているため、NLP研究において非常に不足している。
我々は,アフリカで広く話されている16言語を対象として,ニューストピック分類のための新しいベンチマークデータセットであるMashokhaNEWSを開発した。
論文 参考訳(メタデータ) (2023-04-19T21:12:23Z) - Efficiently Aligned Cross-Lingual Transfer Learning for Conversational
Tasks using Prompt-Tuning [98.60739735409243]
英語のような高リソース言語で訓練された言語モデルの言語間移動は、多くのNLPタスクのために広く研究されている。
並列および大規模多言語会話データセットである言語間アライメント事前学習のためのXSGDを導入する。
協調的な言語間表現を容易にするために,アライメントプロンプトを学習するための効率的なプロンプトチューニング手法を開発した。
論文 参考訳(メタデータ) (2023-04-03T18:46:01Z) - OneAligner: Zero-shot Cross-lingual Transfer with One Rich-Resource
Language Pair for Low-Resource Sentence Retrieval [91.76575626229824]
文検索タスク用に特別に設計されたアライメントモデルであるOneAlignerを提案する。
大規模並列多言語コーパス(OPUS-100)の全ての言語ペアで訓練すると、このモデルは最先端の結果が得られる。
実験結果から,文アライメントタスクの性能はモノリンガルおよび並列データサイズに大きく依存することがわかった。
論文 参考訳(メタデータ) (2022-05-17T19:52:42Z) - Beyond Static Models and Test Sets: Benchmarking the Potential of
Pre-trained Models Across Tasks and Languages [15.373725507698591]
本稿は,多言語評価における既存の実践を信頼できないものにし,言語環境全体にわたるMMLMの性能の全体像を提示していないことを論じる。
我々は,NLPタスクのパフォーマンス予測における最近の研究が,多言語NLPにおけるベンチマークの修正における潜在的な解決策となることを示唆する。
実験データと4つの異なる多言語データセットのケーススタディを比較し、これらの手法が翻訳に基づくアプローチとよく一致している性能の信頼性を推定できることを示した。
論文 参考訳(メタデータ) (2022-05-12T20:42:48Z) - UNKs Everywhere: Adapting Multilingual Language Models to New Scripts [103.79021395138423]
マルチリンガルBERT(mBERT)やXLM-Rのような多言語言語モデルは、様々なNLPタスクに対して最先端の言語間転送性能を提供する。
キャパシティの制限と事前トレーニングデータの大きな差のため、リソース豊富な言語とリソースを対象とする言語には大きなパフォーマンスギャップがある。
本稿では,事前学習した多言語モデルの低リソース言語や未知のスクリプトへの高速かつ効果的な適応を可能にする新しいデータ効率手法を提案する。
論文 参考訳(メタデータ) (2020-12-31T11:37:28Z) - The Tatoeba Translation Challenge -- Realistic Data Sets for Low
Resource and Multilingual MT [0.0]
本稿では,何千もの言語ペアに対するトレーニングとテストデータを提供する機械翻訳のための新しいベンチマークの開発について述べる。
主な目標は、世界言語をより広範囲にカバーしたオープン翻訳ツールとモデルの開発をトリガーすることである。
論文 参考訳(メタデータ) (2020-10-13T13:12:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。