論文の概要: Model Debiasing via Gradient-based Explanation on Representation
- arxiv url: http://arxiv.org/abs/2305.12178v1
- Date: Sat, 20 May 2023 11:57:57 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-24 00:08:04.338135
- Title: Model Debiasing via Gradient-based Explanation on Representation
- Title(参考訳): 表現の勾配に基づく説明によるモデルデバイアス
- Authors: Jindi Zhang, Luning Wang, Dan Su, Yongxiang Huang, Caleb Chen Cao, Lei
Chen
- Abstract要約: 本稿では,デリケートな属性やプロキシな属性に関して,デバイアスを行う新しいフェアネスフレームワークを提案する。
我々のフレームワークは、過去の最先端のアプローチよりも、構造化されていないデータセットと構造化されたデータセットの公平性と正確なトレードオフを達成しています。
- 参考スコア(独自算出の注目度): 14.566739366613309
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning systems produce biased results towards certain demographic
groups, known as the fairness problem. Recent approaches to tackle this problem
learn a latent code (i.e., representation) through disentangled representation
learning and then discard the latent code dimensions correlated with sensitive
attributes (e.g., gender). Nevertheless, these approaches may suffer from
incomplete disentanglement and overlook proxy attributes (proxies for sensitive
attributes) when processing real-world data, especially for unstructured data,
causing performance degradation in fairness and loss of useful information for
downstream tasks. In this paper, we propose a novel fairness framework that
performs debiasing with regard to both sensitive attributes and proxy
attributes, which boosts the prediction performance of downstream task models
without complete disentanglement. The main idea is to, first, leverage
gradient-based explanation to find two model focuses, 1) one focus for
predicting sensitive attributes and 2) the other focus for predicting
downstream task labels, and second, use them to perturb the latent code that
guides the training of downstream task models towards fairness and utility
goals. We show empirically that our framework works with both disentangled and
non-disentangled representation learning methods and achieves better
fairness-accuracy trade-off on unstructured and structured datasets than
previous state-of-the-art approaches.
- Abstract(参考訳): 機械学習システムは、フェアネス問題として知られる特定の人口集団に対して偏りのある結果を生み出す。
この問題に取り組む最近のアプローチは、疎結合な表現学習を通じて潜在コード(つまり表現)を学び、敏感な属性(例えば、性別)に関連付けられた潜在コード次元を破棄する。
それでもこれらのアプローチは、実世界のデータ、特に構造化されていないデータを処理する際に、不完全な歪曲や見落としのプロキシ属性(機密属性のプロキシ)に悩まされる可能性がある。
本稿では,本論文で提案するフェアネスフレームワークを提案する。センシティブな属性とプロキシ属性の両方に対してバイアスを発生させることにより,ダウンストリームタスクモデルの予測性能が完全に乱れずに向上する。
第一に、勾配に基づく説明を活用して、2つのモデルに焦点を当てることである。
1)敏感な属性を予測するための1つの焦点
2) 下流のタスクラベルを予測するもう1つの焦点は、下流のタスクモデルのフェアネスとユーティリティの目標へのトレーニングを導く潜在コードを摂動させることである。
筆者らのフレームワークは,不整合表現学習法と非整合表現学習法の両方で動作することを実証的に示し,非構造化データセットと構造化データセットとの公平性とのトレードオフを従来の最先端手法よりも良好に実現している。
関連論文リスト
- Optimisation Strategies for Ensuring Fairness in Machine Learning: With and Without Demographics [4.662958544712181]
本稿では,機械学習フェアネスにおけるオープンな問題に対処するための2つの形式的枠組みを紹介する。
あるフレームワークでは、オペレータ値の最適化とmin-maxの目的が時系列問題の不正性に対処するために使用される。
第2のフレームワークでは、一般的に使用されるデータセットにおいて、性別や人種などのセンシティブな属性を欠くという課題に対処する。
論文 参考訳(メタデータ) (2024-11-13T22:29:23Z) - Fairness without Sensitive Attributes via Knowledge Sharing [13.141672574114597]
本稿では,信頼度に基づく階層型分類手法であるReckonerを提案する。
実験の結果、ReckonerはCompASデータセットとNew Adultデータセットにおいて、最先端のベースラインを一貫して上回っていることがわかった。
論文 参考訳(メタデータ) (2024-09-27T06:16:14Z) - Classes Are Not Equal: An Empirical Study on Image Recognition Fairness [100.36114135663836]
我々は,クラスが等しくないことを実験的に証明し,様々なデータセットにまたがる画像分類モデルにおいて,公平性の問題が顕著であることを示した。
以上の結果から,モデルでは認識が困難であるクラスに対して,予測バイアスが大きくなる傾向が示唆された。
データ拡張および表現学習アルゴリズムは、画像分類のある程度の公平性を促進することにより、全体的なパフォーマンスを向上させる。
論文 参考訳(メタデータ) (2024-02-28T07:54:50Z) - Improving Fairness using Vision-Language Driven Image Augmentation [60.428157003498995]
公平性は、特に顔領域において、ディープラーニングの識別モデルを訓練する際に重要である。
モデルは、特定の特性(年齢や肌の色など)と無関係な属性(下流タスク)を関連付ける傾向がある
本稿では,これらの相関を緩和し,公平性を向上する手法を提案する。
論文 参考訳(メタデータ) (2023-11-02T19:51:10Z) - Learning for Counterfactual Fairness from Observational Data [62.43249746968616]
公正な機械学習は、人種、性別、年齢などの特定の保護された(感受性のある)属性によって記述されるある種のサブグループに対して、学習モデルのバイアスを取り除くことを目的としている。
カウンターファクトフェアネスを達成するための既存の手法の前提条件は、データに対する因果モデルの事前の人間の知識である。
本研究では,新しいフレームワークCLAIREを提案することにより,因果関係を付与せずに観測データから対実的に公正な予測を行う問題に対処する。
論文 参考訳(メタデータ) (2023-07-17T04:08:29Z) - DualFair: Fair Representation Learning at Both Group and Individual
Levels via Contrastive Self-supervision [73.80009454050858]
この研究は、DualFairと呼ばれる自己教師型モデルを提示し、学習された表現から性別や人種などのセンシティブな属性をデバイアスすることができる。
我々のモデルは、グループフェアネスと対実フェアネスという2つのフェアネス基準を共同で最適化する。
論文 参考訳(メタデータ) (2023-03-15T07:13:54Z) - Semi-FairVAE: Semi-supervised Fair Representation Learning with
Adversarial Variational Autoencoder [92.67156911466397]
逆変分オートエンコーダに基づく半教師付き公正表現学習手法を提案する。
我々は、バイアス認識モデルを用いて、機密属性の固有バイアス情報をキャプチャする。
また、偏見のないモデルを用いて、対立学習を用いて偏見情報を取り除き、偏見のない公正表現を学習する。
論文 参考訳(メタデータ) (2022-04-01T15:57:47Z) - Fairness without the sensitive attribute via Causal Variational
Autoencoder [17.675997789073907]
EUにおけるプライバシーの目的とRGPDのような多彩な規制のため、多くの個人機密属性は収集されないことが多い。
近年の開発成果を近似推論に活用することにより,このギャップを埋めるためのアプローチを提案する。
因果グラフに基づいて、機密情報プロキシを推論するために、SRCVAEと呼ばれる新しい変分自動符号化ベースのフレームワークを利用する。
論文 参考訳(メタデータ) (2021-09-10T17:12:52Z) - You Can Still Achieve Fairness Without Sensitive Attributes: Exploring
Biases in Non-Sensitive Features [29.94644351343916]
本稿では,これらの特徴を同時利用して正確な予測とモデルの正則化を行う新しいフレームワークを提案する。
実世界のデータセットにおける実験結果は,提案モデルの有効性を示す。
論文 参考訳(メタデータ) (2021-04-29T17:52:11Z) - Causal Feature Selection for Algorithmic Fairness [61.767399505764736]
データ管理の統合コンポーネントにおける公平性について検討する。
本稿では,データセットの公平性を保証する特徴のサブコレクションを同定する手法を提案する。
論文 参考訳(メタデータ) (2020-06-10T20:20:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。