論文の概要: DAC: Detector-Agnostic Spatial Covariances for Deep Local Features
- arxiv url: http://arxiv.org/abs/2305.12250v1
- Date: Sat, 20 May 2023 17:43:09 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-23 23:27:55.964725
- Title: DAC: Detector-Agnostic Spatial Covariances for Deep Local Features
- Title(参考訳): DAC:深部局所特徴に対する検出器非依存空間共分散
- Authors: Javier Tirado-Gar\'in, Frederik Warburg, Javier Civera
- Abstract要約: 現在の深部視覚特徴検出器は検出された特徴の空間的不確かさをモデル化していない。
本稿では,事前訓練したディープ特徴検出器に接続可能な2つのポストホック共分散推定法を提案する。
- 参考スコア(独自算出の注目度): 12.074766935042588
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current deep visual local feature detectors do not model the spatial
uncertainty of detected features, producing suboptimal results in downstream
applications. In this work, we propose two post-hoc covariance estimates that
can be plugged into any pretrained deep feature detector: a simple, isotropic
covariance estimate that uses the predicted score at a given pixel location,
and a full covariance estimate via the local structure tensor of the learned
score maps. Both methods are easy to implement and can be applied to any deep
feature detector. We show that these covariances are directly related to errors
in feature matching, leading to improvements in downstream tasks, including
triangulation, solving the perspective-n-point problem and motion-only bundle
adjustment. Code is available at https://github.com/javrtg/DAC
- Abstract(参考訳): 現在の深部視覚特徴検出器は検出された特徴の空間的不確かさをモデル化せず、下流の応用において最適な結果をもたらす。
本研究では,事前学習済み深部特徴検出器に挿入可能な2つのポストホック共分散推定法を提案する。与えられた画素位置における予測スコアを用いた単純等方共分散推定法と,学習スコアマップの局所構造テンソルによる全共分散推定法を提案する。
どちらの方法も実装が容易で、どんな深い特徴検出器にも適用できる。
これらの共分散は機能マッチングのエラーに直接関連しており、三角測量、遠近法n点問題の解法、モーションのみのバンドル調整など下流タスクの改善に繋がる。
コードはhttps://github.com/javrtg/DACで入手できる。
関連論文リスト
- Learning to Make Keypoints Sub-Pixel Accurate [80.55676599677824]
本研究は,2次元局所特徴の検出におけるサブピクセル精度の課題に対処する。
本稿では,検出された特徴に対するオフセットベクトルを学習することにより,サブピクセル精度で検出器を拡張できる新しいネットワークを提案する。
論文 参考訳(メタデータ) (2024-07-16T12:39:56Z) - CPR++: Object Localization via Single Coarse Point Supervision [55.8671776333499]
粗い点修正(CPR)は、アルゴリズムの観点からの意味的分散を緩和する最初の試みである。
CPRは、アノテートされた最初のポイントを置き換えるために、近隣地域のセマンティックセンターポイントを選択することで意味のばらつきを減らす。
CPR++は、スケール情報を取得し、グローバル領域における意味的分散をさらに低減することができる。
論文 参考訳(メタデータ) (2024-01-30T17:38:48Z) - Meta Learning Low Rank Covariance Factors for Energy-Based Deterministic
Uncertainty [58.144520501201995]
ニューラルネットワーク層のBi-Lipschitz正規化は、各レイヤの特徴空間におけるデータインスタンス間の相対距離を保存する。
注意セットエンコーダを用いて,タスク固有の共分散行列を効率的に構築するために,対角的,対角的,低ランクな要素のメタ学習を提案する。
また,最終的な予測分布を達成するために,スケールしたエネルギーを利用する推論手法を提案する。
論文 参考訳(メタデータ) (2021-10-12T22:04:19Z) - FFD: Fast Feature Detector [22.51804239092462]
特定のスケール空間領域にロバストで正確なキーポイントが存在することを示す。
スケールスペースピラミッドの滑らか度比とぼかしをそれぞれ2と0.627に設定することで、信頼性の高いキーポイントの検出が容易であることが証明された。
論文 参考訳(メタデータ) (2020-12-01T21:56:35Z) - Dense Label Encoding for Boundary Discontinuity Free Rotation Detection [69.75559390700887]
本稿では,分類に基づく比較的研究の少ない方法論について検討する。
我々は2つの側面でフロンティアを推し進めるための新しい手法を提案する。
航空画像のための大規模公開データセットの実験と視覚解析は,我々のアプローチの有効性を示している。
論文 参考訳(メタデータ) (2020-11-19T05:42:02Z) - Making Affine Correspondences Work in Camera Geometry Computation [62.7633180470428]
局所的な特徴は、ポイント・ツー・ポイント対応ではなく、リージョン・ツー・リージョンを提供する。
本稿では,全モデル推定パイプラインにおいて,地域間マッチングを効果的に活用するためのガイドラインを提案する。
実験により、アフィンソルバはより高速な実行時にポイントベースソルバに匹敵する精度を達成できることが示された。
論文 参考訳(メタデータ) (2020-07-20T12:07:48Z) - Scope Head for Accurate Localization in Object Detection [135.9979405835606]
本研究では,各位置のアンカーを相互依存関係としてモデル化したScopeNetと呼ばれる新しい検出器を提案する。
我々の簡潔で効果的な設計により、提案したScopeNetはCOCOの最先端の成果を達成する。
論文 参考訳(メタデータ) (2020-05-11T04:00:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。