論文の概要: Evaluating Open-QA Evaluation
- arxiv url: http://arxiv.org/abs/2305.12421v3
- Date: Mon, 28 Aug 2023 16:15:21 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-29 23:34:21.774063
- Title: Evaluating Open-QA Evaluation
- Title(参考訳): Open-QA評価の評価
- Authors: Cunxiang Wang, Sirui Cheng, Qipeng Guo, Zhikun Xu, Bowen Ding, Yidong
Wang, Xiangkun Hu, Zheng Zhang, Yue Zhang
- Abstract要約: 本研究では,大規模言語モデル(LLM)の事実を直接推定できるオープン質問回答(Open QA)タスクの評価に焦点をあてる。
オープンQA内の標準回答に関連するAI生成回答の精度を評価するために,新たなタスクであるQA評価(QA-Eval)とそれに対応するデータセットEVOUNAを導入する。
- 参考スコア(独自算出の注目度): 30.158025709331664
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study focuses on the evaluation of the Open Question Answering (Open-QA)
task, which can directly estimate the factuality of large language models
(LLMs). Current automatic evaluation methods have shown limitations, indicating
that human evaluation still remains the most reliable approach. We introduce a
new task, Evaluating QA Evaluation (QA-Eval) and the corresponding dataset
EVOUNA, designed to assess the accuracy of AI-generated answers in relation to
standard answers within Open-QA. Our evaluation of these methods utilizes
human-annotated results to measure their performance. Specifically, the work
investigates methods that show high correlation with human evaluations, deeming
them more reliable. We also discuss the pitfalls of current methods and methods
to improve LLM-based evaluators. We believe this new QA-Eval task and
corresponding dataset EVOUNA will facilitate the development of more effective
automatic evaluation tools and prove valuable for future research in this area.
All resources are available at \url{https://github.com/wangcunxiang/QA-Eval}
and it is under the Apache-2.0 License.
- Abstract(参考訳): 本研究では,大規模言語モデル (LLM) の事実性を直接推定できるオープン質問回答 (Open QA) タスクの評価に焦点をあてる。
現在の自動評価手法は限界を示しており、人間の評価が依然として最も信頼できるアプローチであることを示している。
オープンQA内の標準回答に関連するAI生成回答の精度を評価するために,新たなタスクであるQA評価(QA-Eval)とそれに対応するデータセットEVOUNAを導入する。
提案手法の評価は,その性能測定にヒューマンアノテート結果を利用する。
具体的には,人間評価と高い相関を示す手法について検討し,その信頼性について検討した。
また,LLMに基づく評価手法の改良に向け,現在の手法と手法の落とし穴についても論じる。
この新たなQA-Evalタスクとそれに対応するデータセットEVOUNAは、より効果的な自動評価ツールの開発を促進し、この分野における今後の研究に有用であることを示す。
すべてのリソースは \url{https://github.com/wangcunxiang/QA-Eval} で入手できる。
関連論文リスト
- IQA-EVAL: Automatic Evaluation of Human-Model Interactive Question Answering [10.338962367542331]
本稿では,対話型質問応答評価を実現するための自動評価フレームワークIQA-EVALを提案する。
また, LLM を用いた評価エージェント (LEA) を導入し, 人の振る舞いをシミュレートし, IQA モデルとの相互作用を生成する。
本稿では,GPT-4をバックボーンモデルとした評価フレームワークが,IQAタスクにおける人的評価と高い相関性を実現することを示す。
論文 参考訳(メタデータ) (2024-08-24T10:34:20Z) - Accurate and Nuanced Open-QA Evaluation Through Textual Entailment [4.762213968673381]
本稿では,より情報的かつ汎用的な解答を識別するために,解答の包含関係について検討する。
提案するエンテーメントに基づく評価では,回答間の推論ギャップを定量化することにより,ボーナスや部分マークの割り当てが可能である。
論文 参考訳(メタデータ) (2024-05-26T21:33:27Z) - Evaluating Generative Language Models in Information Extraction as Subjective Question Correction [49.729908337372436]
本稿では,新しい評価手法SQC-Scoreを提案する。
主観的質問訂正の原則に着想を得て,新しい評価手法SQC-Scoreを提案する。
3つの情報抽出タスクの結果から,SQC-Scoreは基準値よりもアノテータの方が好ましいことが示された。
論文 参考訳(メタデータ) (2024-04-04T15:36:53Z) - The Generative AI Paradox on Evaluation: What It Can Solve, It May Not
Evaluate [17.77014177096838]
本稿では,ジェネレーションタスクにおけるLarge Language Models (LLMs) が同等に評価できるという仮定を考察する。
質問応答(QA)における3つのLLMと1つのオープンソースLMの性能評価と,TriviaQAデータセットを用いた評価課題について述べる。
論文 参考訳(メタデータ) (2024-02-09T06:16:08Z) - PROXYQA: An Alternative Framework for Evaluating Long-Form Text Generation with Large Language Models [72.57329554067195]
ProxyQAは、長文生成を評価するための革新的なフレームワークである。
さまざまなドメインにまたがる詳細なヒューマンキュレートされたメタクエストで構成されており、それぞれに事前にアノテートされた回答を持つ特定のプロキシクエストが伴っている。
プロキシクエリに対処する際の評価器の精度を通じて、生成されたコンテンツの品質を評価する。
論文 参考訳(メタデータ) (2024-01-26T18:12:25Z) - F-Eval: Assessing Fundamental Abilities with Refined Evaluation Methods [102.98899881389211]
F-Evalは、表現、常識、論理などの基本能力を評価するためのバイリンガル評価ベンチマークである。
参照不要な主観的タスクに対しては,APIモデルによるスコアの代替として,新たな評価手法を考案する。
論文 参考訳(メタデータ) (2024-01-26T13:55:32Z) - SQUARE: Automatic Question Answering Evaluation using Multiple Positive
and Negative References [73.67707138779245]
SQuArE (Sentence-level QUestion AnsweRing Evaluation) という新しい評価指標を提案する。
文レベルの抽出(回答選択)と生成(GenQA)の両方のQAシステムでSQuArEを評価する。
論文 参考訳(メタデータ) (2023-09-21T16:51:30Z) - From Static Benchmarks to Adaptive Testing: Psychometrics in AI Evaluation [60.14902811624433]
本稿では,静的評価手法から適応テストへのパラダイムシフトについて論じる。
これには、ベンチマークで各テスト項目の特性と価値を推定し、リアルタイムでアイテムを動的に調整することが含まれる。
我々は、AI評価にサイコメトリックを採用する現在のアプローチ、アドバンテージ、そして根底にある理由を分析します。
論文 参考訳(メタデータ) (2023-06-18T09:54:33Z) - The Meta-Evaluation Problem in Explainable AI: Identifying Reliable
Estimators with MetaQuantus [10.135749005469686]
説明可能なAI(XAI)分野における未解決課題の1つは、説明方法の品質を最も確実に見積もる方法を決定することである。
我々は、XAIの異なる品質推定器のメタ評価を通じてこの問題に対処する。
我々の新しいフレームワークMetaQuantusは、品質推定器の2つの相補的な性能特性を解析する。
論文 参考訳(メタデータ) (2023-02-14T18:59:02Z) - Towards Automatic Evaluation of Dialog Systems: A Model-Free Off-Policy
Evaluation Approach [84.02388020258141]
強化学習におけるオフポリシ評価に基づく人間評価スコア推定のための新しいフレームワークであるENIGMAを提案する。
ENIGMAはいくつかの事前収集された経験データしか必要としないため、評価中にターゲットポリシーとのヒューマンインタラクションは不要である。
実験の結果,ENIGMAは人間の評価スコアと相関して既存手法よりも有意に優れていた。
論文 参考訳(メタデータ) (2021-02-20T03:29:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。