論文の概要: Communication Efficient Federated Learning for Multilingual Neural
Machine Translation with Adapter
- arxiv url: http://arxiv.org/abs/2305.12449v1
- Date: Sun, 21 May 2023 12:48:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-23 20:24:40.239056
- Title: Communication Efficient Federated Learning for Multilingual Neural
Machine Translation with Adapter
- Title(参考訳): 適応型多言語ニューラルマシン翻訳のためのコミュニケーション効率の良いフェデレーション学習
- Authors: Yi Liu, Xiaohan Bi, Lei Li, Sishuo Chen, Wenkai Yang, Xu Sun
- Abstract要約: Federated Multilingual Neural Machine Translation (Fed-MNMT)は、限られた言語資源を持つ機関にとって有望なパラダイムとして登場した。
このアプローチにより、複数の機関がクライアントとして行動し、集中的なトレーニングのためにセンシティブなデータを収集するのではなく、モデル同期を通じて統一されたモデルをトレーニングできる。
しかし, 事前学習言語モデル (PLM) のサイズが大きくなるにつれ, 同期時のパラメータ伝達の通信コストは, 訓練速度のボトルネックとなっている。
PLMを凍結し,クライアント間でのみ軽量なアダプタモジュールを転送することで,この問題に対処する通信効率の高いFed-MNMTフレームワークを提案する。
- 参考スコア(独自算出の注目度): 21.512817959760007
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated Multilingual Neural Machine Translation (Fed-MNMT) has emerged as a
promising paradigm for institutions with limited language resources. This
approach allows multiple institutions to act as clients and train a unified
model through model synchronization, rather than collecting sensitive data for
centralized training. This significantly reduces the cost of corpus collection
and preserves data privacy. However, as pre-trained language models (PLMs)
continue to increase in size, the communication cost for transmitting
parameters during synchronization has become a training speed bottleneck. In
this paper, we propose a communication-efficient Fed-MNMT framework that
addresses this issue by keeping PLMs frozen and only transferring lightweight
adapter modules between clients. Since different language pairs exhibit
substantial discrepancies in data distributions, adapter parameters of clients
may conflict with each other. To tackle this, we explore various clustering
strategies to group parameters for integration and mitigate the negative
effects of conflicting parameters. Experimental results demonstrate that our
framework reduces communication cost by over 98% while achieving similar or
even better performance compared to competitive baselines. Further analysis
reveals that clustering strategies effectively solve the problem of linguistic
discrepancy and pruning adapter modules further improves communication
efficiency.
- Abstract(参考訳): Federated Multilingual Neural Machine Translation (Fed-MNMT)は、限られた言語資源を持つ機関にとって有望なパラダイムとして登場した。
このアプローチにより、複数の機関がクライアントとして行動し、集中的なトレーニングのためにセンシティブなデータを収集するのではなく、モデル同期を通じて統一モデルをトレーニングできる。
これはコーパス収集のコストを大幅に削減し、データのプライバシを保持する。
しかし, 事前学習言語モデル (PLM) のサイズが大きくなるにつれ, 同期時のパラメータ伝達の通信コストは, 訓練速度のボトルネックとなっている。
本稿では,PLMを凍結し,クライアント間でのみ軽量なアダプタモジュールを転送することで,この問題に対処する通信効率の高いFed-MNMTフレームワークを提案する。
異なる言語ペアはデータ分布にかなりの差異があるため、クライアントのアダプタパラメータは互いに矛盾する可能性がある。
これに対処するために,統合のためのグループパラメータに対する様々なクラスタリング戦略を検討し,相反するパラメータの悪影響を緩和する。
実験の結果,本フレームワークは通信コストを98%以上削減するとともに,競合ベースラインと同等あるいはそれ以上のパフォーマンスを実現していることがわかった。
さらに分析した結果,クラスタリング戦略は言語的不一致の問題を効果的に解決し,プラニングアダプタモジュールは通信効率をさらに向上することがわかった。
関連論文リスト
- Modality Alignment Meets Federated Broadcasting [9.752555511824593]
フェデレートラーニング(FL)は、ローカルデータを集中化せずに、分散エッジデバイス間でモデルをトレーニングすることで、データのプライバシを保護する強力なアプローチとして登場した。
本稿では,テキストエンコーダをサーバ上に配置し,画像エンコーダをローカルデバイス上で動作させる,モダリティアライメントを利用した新しいFLフレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-24T13:30:03Z) - FedsLLM: Federated Split Learning for Large Language Models over Communication Networks [30.47242577997792]
本稿では,低ランク適応技術 (LoRA) と分割学習フレームワークを組み合わせることで,大規模言語モデル (FedsLLM) のためのフェデレーション分割学習を提案する。
提案アルゴリズムは、最適化されていないシナリオと比較して平均47.63%遅延を削減する。
論文 参考訳(メタデータ) (2024-07-12T13:23:54Z) - SpaFL: Communication-Efficient Federated Learning with Sparse Models and Low computational Overhead [75.87007729801304]
SpaFL: 計算オーバーヘッドの少ないスパースモデル構造を最適化する通信効率のよいFLフレームワークを提案する。
実験により、スパースベースラインに比べて通信やコンピューティングリソースをはるかに少なくし、精度を向上することが示された。
論文 参考訳(メタデータ) (2024-06-01T13:10:35Z) - Communication-Efficient Federated Learning through Adaptive Weight
Clustering and Server-Side Distillation [10.541541376305245]
Federated Learning(FL)は、複数のデバイスにわたるディープニューラルネットワークの協調トレーニングのための有望なテクニックである。
FLは、トレーニング中に繰り返しサーバー・クライアント間の通信によって、過剰な通信コストによって妨げられる。
本稿では,動的重みクラスタリングとサーバ側知識蒸留を組み合わせた新しいアプローチであるFedCompressを提案する。
論文 参考訳(メタデータ) (2024-01-25T14:49:15Z) - Only Send What You Need: Learning to Communicate Efficiently in
Federated Multilingual Machine Translation [19.28500206536013]
フェデレートラーニング(FL)は多言語課題を解決するための有望なアプローチである。
モデル伝送の通信効率を向上させるメタ学習に基づく適応パラメータ選択手法MetaSendを提案する。
我々は,MetaSendが,限られた通信予算が存在する場合に,翻訳品質のベースラインよりも大幅に改善されることを実証した。
論文 参考訳(メタデータ) (2024-01-15T04:04:26Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
フェデレートラーニング(Federated Learning)は、分散機械学習の手法である。
我々は,AMSGradの異種局所変種であるFedLALRを提案し,各クライアントが学習率を調整する。
クライアントが指定した自動調整型学習率スケジューリングが,クライアント数に対して収束し,線形高速化を実現することを示す。
論文 参考訳(メタデータ) (2023-09-18T12:35:05Z) - Communication and Storage Efficient Federated Split Learning [19.369076939064904]
Federated Split LearningはFLの並列モデルトレーニング原則を保存する。
サーバはクライアントごとに別々のモデルをメンテナンスしなければなりません。
本稿では,コミュニケーションと記憶の効率的なフェデレーションと分割学習戦略を提案する。
論文 参考訳(メタデータ) (2023-02-11T04:44:29Z) - DisPFL: Towards Communication-Efficient Personalized Federated Learning
via Decentralized Sparse Training [84.81043932706375]
本稿では,分散型(ピアツーピア)通信プロトコルであるDis-PFLにおいて,新たな個人化フェデレーション学習フレームワークを提案する。
Dis-PFLはパーソナライズされたスパースマスクを使用して、エッジ上のスパースローカルモデルをカスタマイズする。
本手法は,計算複雑性の異なる異種ローカルクライアントに容易に適応できることを実証する。
論文 参考訳(メタデータ) (2022-06-01T02:20:57Z) - Parameter-Efficient Neural Reranking for Cross-Lingual and Multilingual
Retrieval [66.69799641522133]
最先端のニューラルランカーは、お腹が空いていることで悪名高い。
現在のアプローチでは、英語データに基づいて訓練されたローダを、多言語エンコーダを用いて他の言語や言語間設定に転送するのが一般的である。
本研究では,Sparse Fine-Tuning Masks (SFTMs) とAdapters (Adapters) の2つのパラメータ効率のアプローチにより,より軽量で効果的なゼロショット転送が可能となることを示す。
論文 参考訳(メタデータ) (2022-04-05T15:44:27Z) - Distributionally Robust Multilingual Machine Translation [94.51866646879337]
本稿では,分散的ロバストな最適化に基づくMNMT(Multilingual Neural Machine Translation)の新しい学習目標を提案する。
この目的を,反復的最適応答方式を用いて,大規模翻訳コーパスに対して実用的に最適化する方法を示す。
本手法は,多対一の翻訳設定と多対多の翻訳設定の両方において,平均と言語毎のパフォーマンスにおいて,強いベースライン法より一貫して優れる。
論文 参考訳(メタデータ) (2021-09-09T03:48:35Z) - Dynamic Attention-based Communication-Efficient Federated Learning [85.18941440826309]
フェデレートラーニング(FL)は、グローバル機械学習モデルをトレーニングするためのソリューションを提供する。
FLは、クライアントデータの分散が非IIDであるときに性能劣化に悩まされる。
本稿では,この劣化に対処するために,新しい適応トレーニングアルゴリズムであるtextttAdaFL$を提案する。
論文 参考訳(メタデータ) (2021-08-12T14:18:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。