論文の概要: Federated Multimodal Learning with Dual Adapters and Selective Pruning for Communication and Computational Efficiency
- arxiv url: http://arxiv.org/abs/2503.07552v1
- Date: Mon, 10 Mar 2025 17:21:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 18:54:09.540814
- Title: Federated Multimodal Learning with Dual Adapters and Selective Pruning for Communication and Computational Efficiency
- Title(参考訳): デュアルアダプタによるフェデレーション型マルチモーダル学習とコミュニケーションと計算効率のための選択的プルーニング
- Authors: Duy Phuong Nguyen, J. Pablo Munoz, Tanya Roosta, Ali Jannesari,
- Abstract要約: フェデレートラーニング(FL)は、データプライバシを保持しながら、分散クライアント間の協調学習を可能にする。
本稿では,これらの課題に対処するための新しいフレームワークを提案する。
- 参考スコア(独自算出の注目度): 6.0860246234554545
- License:
- Abstract: Federated Learning (FL) enables collaborative learning across distributed clients while preserving data privacy. However, FL faces significant challenges when dealing with heterogeneous data distributions, which can lead to suboptimal global models that fail to generalize across diverse clients. In this work, we propose a novel framework designed to tackle these challenges by introducing a dual-adapter approach. The method utilizes a larger local adapter for client-specific personalization and a smaller global adapter to facilitate efficient knowledge sharing across clients. Additionally, we incorporate a pruning mechanism to reduce communication overhead by selectively removing less impactful parameters from the local adapter. Through extensive experiments on a range of vision and language tasks, our method demonstrates superior performance compared to existing approaches. It achieves higher test accuracy, lower performance variance among clients, and improved worst-case performance, all while significantly reducing communication and computation costs. Overall, the proposed method addresses the critical trade-off between model personalization and generalization, offering a scalable solution for real-world FL applications.
- Abstract(参考訳): フェデレートラーニング(FL)は、データプライバシを保持しながら、分散クライアント間の協調学習を可能にする。
しかし、FLは異種データ分散を扱う際に大きな課題に直面しており、多様なクライアントにまたがる一般化に失敗する準最適グローバルモデルに繋がる可能性がある。
本研究では,これらの課題に対処するための新しいフレームワークを提案する。
この方法は、クライアント固有のパーソナライズのためのより大きなローカルアダプタと、クライアント間の効率的な知識共有を容易にするためのより小さなグローバルアダプタを利用する。
さらに、局所的なアダプタから影響の少ないパラメータを選択的に除去することにより、通信オーバーヘッドを低減するためのプルーニング機構を組み込んだ。
視覚と言語タスクの広範な実験を通じて,本手法は既存手法と比較して優れた性能を示す。
テスト精度の向上、クライアント間のパフォーマンスのばらつきの低減、最悪のパフォーマンスの改善、通信と計算コストの大幅な削減を実現している。
提案手法は,モデルパーソナライゼーションと一般化の重大なトレードオフに対処し,実世界のFLアプリケーションにスケーラブルなソリューションを提供する。
関連論文リスト
- Client-Centric Federated Adaptive Optimization [78.30827455292827]
Federated Learning(FL)は、クライアントが独自のデータをプライベートに保ちながら、協調的にモデルをトレーニングする分散学習パラダイムである。
本稿では,新しいフェデレーション最適化手法のクラスであるフェデレーション中心適応最適化を提案する。
論文 参考訳(メタデータ) (2025-01-17T04:00:50Z) - Over-the-Air Fair Federated Learning via Multi-Objective Optimization [52.295563400314094]
本稿では,公平なFLモデルを訓練するためのOTA-FFL(Over-the-air Fair Federated Learning Algorithm)を提案する。
OTA-FFLの公正性とロバストな性能に対する優位性を示す実験を行った。
論文 参考訳(メタデータ) (2025-01-06T21:16:51Z) - Efficient and Robust Regularized Federated Recommendation [52.24782464815489]
推薦システム(RSRS)は、ユーザの好みとプライバシの両方に対処する。
通信効率を向上させるために,非一様勾配勾配勾配を取り入れた新しい手法を提案する。
RFRecFの強靭性は、多様なベースラインに比べて優れている。
論文 参考訳(メタデータ) (2024-11-03T12:10:20Z) - Adversarial Federated Consensus Learning for Surface Defect Classification Under Data Heterogeneity in IIoT [8.48069043458347]
産業用IoT(Industrial Internet of Things)における各種エンティティからの十分なトレーニングデータの収集と集中化は難しい。
フェデレートラーニング(FL)は、クライアント間で協調的なグローバルモデルトレーニングを可能にするソリューションを提供する。
我々は,Adversarial Federated Consensus Learning (AFedCL) という新しいFLアプローチを提案する。
論文 参考訳(メタデータ) (2024-09-24T03:59:32Z) - FedMCP: Parameter-Efficient Federated Learning with Model-Contrastive Personalization [19.328216705039527]
FedMCPはFLのためのモデルコントラストパーソナライゼーションを用いたパラメータ効率の高いファインチューニング手法である。
我々は,PLMの最先端FLファインチューニング手法に対して,FedMCPが大幅な性能改善を実現していることを示す。
論文 参考訳(メタデータ) (2024-08-28T04:19:47Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
フェデレートラーニング(Federated Learning)は、分散機械学習の手法である。
我々は,AMSGradの異種局所変種であるFedLALRを提案し,各クライアントが学習率を調整する。
クライアントが指定した自動調整型学習率スケジューリングが,クライアント数に対して収束し,線形高速化を実現することを示す。
論文 参考訳(メタデータ) (2023-09-18T12:35:05Z) - Federated Learning for Semantic Parsing: Task Formulation, Evaluation
Setup, New Algorithms [29.636944156801327]
複数のクライアントは、セマンティック解析データを共有せずに、1つのグローバルモデルを協調的にトレーニングする。
Lorarは、各ラウンド中のトレーニング損失の削減に基づいて、グローバルモデル更新に対する各クライアントのコントリビューションを調整する。
より小さなデータセットを持つクライアントは、より大きなパフォーマンス向上を享受する。
論文 参考訳(メタデータ) (2023-05-26T19:25:49Z) - Efficient Personalized Federated Learning via Sparse Model-Adaptation [47.088124462925684]
Federated Learning (FL)は、複数のクライアントに対して、独自のプライベートデータを共有せずに機械学習モデルをトレーニングすることを目的としている。
疎局所モデルを適応的かつ効率的に学習し,効率的なパーソナライズFLのためのpFedGateを提案する。
我々は,pFedGateが最先端手法よりも優れたグローバル精度,個人精度,効率性を同時に達成できることを示す。
論文 参考訳(メタデータ) (2023-05-04T12:21:34Z) - Straggler-Resilient Personalized Federated Learning [55.54344312542944]
フェデレーション学習は、プライバシと通信の制限を尊重しながら、クライアントの大規模なネットワークに分散されたサンプルからのトレーニングモデルを可能にする。
これら2つのハードルを同時に処理する理論的なスピードアップを保証する新しいアルゴリズム手法を開発した。
提案手法は,すべてのクライアントのデータを用いてグローバルな共通表現を見つけ,各クライアントに対してパーソナライズされたソリューションにつながるパラメータの集合を学習するために,表現学習理論からのアイデアに依存している。
論文 参考訳(メタデータ) (2022-06-05T01:14:46Z) - DisPFL: Towards Communication-Efficient Personalized Federated Learning
via Decentralized Sparse Training [84.81043932706375]
本稿では,分散型(ピアツーピア)通信プロトコルであるDis-PFLにおいて,新たな個人化フェデレーション学習フレームワークを提案する。
Dis-PFLはパーソナライズされたスパースマスクを使用して、エッジ上のスパースローカルモデルをカスタマイズする。
本手法は,計算複雑性の異なる異種ローカルクライアントに容易に適応できることを実証する。
論文 参考訳(メタデータ) (2022-06-01T02:20:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。