G3Detector: General GPT-Generated Text Detector
- URL: http://arxiv.org/abs/2305.12680v2
- Date: Fri, 4 Aug 2023 06:07:49 GMT
- Title: G3Detector: General GPT-Generated Text Detector
- Authors: Haolan Zhan and Xuanli He and Qiongkai Xu and Yuxiang Wu and Pontus
Stenetorp
- Abstract summary: We introduce an unpretentious yet potent detection approach proficient in identifying synthetic text across a wide array of fields.
Our detector demonstrates outstanding performance uniformly across various model architectures and decoding strategies.
It also possesses the capability to identify text generated utilizing a potent detection-evasion technique.
- Score: 26.47122201110071
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The burgeoning progress in the field of Large Language Models (LLMs) heralds
significant benefits due to their unparalleled capacities. However, it is
critical to acknowledge the potential misuse of these models, which could give
rise to a spectrum of social and ethical dilemmas. Despite numerous preceding
efforts centered around distinguishing synthetic text, most existing detection
systems fail to identify data synthesized by the latest LLMs, such as ChatGPT
and GPT-4. In response to this challenge, we introduce an unpretentious yet
potent detection approach proficient in identifying synthetic text across a
wide array of fields. Moreover, our detector demonstrates outstanding
performance uniformly across various model architectures and decoding
strategies. It also possesses the capability to identify text generated
utilizing a potent detection-evasion technique. Our comprehensive research
underlines our commitment to boosting the robustness and efficiency of
machine-generated text detection mechanisms, particularly in the context of
swiftly progressing and increasingly adaptive AI technologies.
Related papers
- Detecting Machine-Generated Long-Form Content with Latent-Space Variables [54.07946647012579]
Existing zero-shot detectors primarily focus on token-level distributions, which are vulnerable to real-world domain shifts.
We propose a more robust method that incorporates abstract elements, such as event transitions, as key deciding factors to detect machine versus human texts.
arXiv Detail & Related papers (2024-10-04T18:42:09Z) - Navigating the Shadows: Unveiling Effective Disturbances for Modern AI Content Detectors [24.954755569786396]
AI-text detection has emerged to distinguish between human and machine-generated content.
Recent research indicates that these detection systems often lack robustness and struggle to effectively differentiate perturbed texts.
Our work simulates real-world scenarios in both informal and professional writing, exploring the out-of-the-box performance of current detectors.
arXiv Detail & Related papers (2024-06-13T08:37:01Z) - Deciphering Textual Authenticity: A Generalized Strategy through the Lens of Large Language Semantics for Detecting Human vs. Machine-Generated Text [8.290557547578146]
We introduce a novel system, T5LLMCipher, for detecting machine-generated text using a pretrained T5 encoder combined with LLM embedding sub-clustering.
We find that our approach provides state-of-the-art generalization ability, with an average increase in F1 score on machine-generated text of 19.6% on unseen generators and domains.
arXiv Detail & Related papers (2024-01-17T18:45:13Z) - Assaying on the Robustness of Zero-Shot Machine-Generated Text Detectors [57.7003399760813]
We explore advanced Large Language Models (LLMs) and their specialized variants, contributing to this field in several ways.
We uncover a significant correlation between topics and detection performance.
These investigations shed light on the adaptability and robustness of these detection methods across diverse topics.
arXiv Detail & Related papers (2023-12-20T10:53:53Z) - Towards Possibilities & Impossibilities of AI-generated Text Detection:
A Survey [97.33926242130732]
Large Language Models (LLMs) have revolutionized the domain of natural language processing (NLP) with remarkable capabilities of generating human-like text responses.
Despite these advancements, several works in the existing literature have raised serious concerns about the potential misuse of LLMs.
To address these concerns, a consensus among the research community is to develop algorithmic solutions to detect AI-generated text.
arXiv Detail & Related papers (2023-10-23T18:11:32Z) - Watermarking Conditional Text Generation for AI Detection: Unveiling
Challenges and a Semantic-Aware Watermark Remedy [52.765898203824975]
We introduce a semantic-aware watermarking algorithm that considers the characteristics of conditional text generation and the input context.
Experimental results demonstrate that our proposed method yields substantial improvements across various text generation models.
arXiv Detail & Related papers (2023-07-25T20:24:22Z) - Detection of Fake Generated Scientific Abstracts [0.9525711971667679]
The academic community has expressed concerns regarding the difficulty of discriminating between what is real and what is artificially generated.
In this study, we utilize the GPT-3 model to generate scientific paper abstracts through Artificial Intelligence.
We explore various text representation methods when combined with Machine Learning models with the aim of identifying machine-written text.
arXiv Detail & Related papers (2023-04-12T20:20:22Z) - On the Possibilities of AI-Generated Text Detection [76.55825911221434]
We argue that as machine-generated text approximates human-like quality, the sample size needed for detection bounds increases.
We test various state-of-the-art text generators, including GPT-2, GPT-3.5-Turbo, Llama, Llama-2-13B-Chat-HF, and Llama-2-70B-Chat-HF, against detectors, including oBERTa-Large/Base-Detector, GPTZero.
arXiv Detail & Related papers (2023-04-10T17:47:39Z) - MGTBench: Benchmarking Machine-Generated Text Detection [54.81446366272403]
This paper proposes the first benchmark framework for MGT detection against powerful large language models (LLMs)
We show that a larger number of words in general leads to better performance and most detection methods can achieve similar performance with much fewer training samples.
Our findings indicate that the model-based detection methods still perform well in the text attribution task.
arXiv Detail & Related papers (2023-03-26T21:12:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.