論文の概要: Efficient Learning of Quantum States Prepared With Few Non-Clifford
Gates
- arxiv url: http://arxiv.org/abs/2305.13409v3
- Date: Mon, 11 Sep 2023 23:24:51 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-13 17:11:22.679786
- Title: Efficient Learning of Quantum States Prepared With Few Non-Clifford
Gates
- Title(参考訳): 非クリフォードゲートの少ない量子状態の効率的な学習
- Authors: Sabee Grewal, Vishnu Iyer, William Kretschmer, Daniel Liang
- Abstract要約: 我々はクリフォードゲートと$O(log(n))$非クリフォードゲートで用意された量子状態を効率的に学習するアルゴリズムを与える。
具体的には、$n$-qubit state $lvert psi rangle$に対して、$mathsfpoly(n,2t,1/epsilon)$ time and copy of $lvert psi rangle$ sufficeを示す。
- 参考スコア(独自算出の注目度): 0.47109219881156844
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We give an algorithm that efficiently learns a quantum state prepared by
Clifford gates and $O(\log(n))$ non-Clifford gates. Specifically, for an
$n$-qubit state $\lvert \psi \rangle$ prepared with at most $t$ non-Clifford
gates, we show that $\mathsf{poly}(n,2^t,1/\epsilon)$ time and copies of
$\lvert \psi \rangle$ suffice to learn $\lvert \psi \rangle$ to trace distance
at most $\epsilon$. This result follows as a special case of an algorithm for
learning states with large stabilizer dimension, where a quantum state has
stabilizer dimension $k$ if it is stabilized by an abelian group of $2^k$ Pauli
operators. We also develop an efficient property testing algorithm for
stabilizer dimension, which may be of independent interest.
- Abstract(参考訳): 我々はクリフォードゲートと$O(\log(n))$非クリフォードゲートで用意された量子状態を効率的に学習するアルゴリズムを与える。
具体的には、$n$-qubit state $\lvert \psi \rangle$を少なくとも$t$非クリフォードゲートで用意すると、$\mathsf{poly}(n,2^t,1/\epsilon)$ time and copy of $\lvert \psi \rangle$ suffice to learn $\lvert \psi \rangle$ to trace distance at most $\epsilon$を示す。
この結果は、量子状態が2^k$ パウリ作用素のアーベル群によって安定化されたとき、安定化次元が$k$となるような大きな安定化次元を持つ状態を学ぶためのアルゴリズムの特別な場合として従う。
また, 独立興味のある安定度次元に対する効率的な特性評価アルゴリズムを開発した。
関連論文リスト
- A Scalable Algorithm for Individually Fair K-means Clustering [77.93955971520549]
Jung et al. と Mahabadi et al が導入した個別フェア (p$, $k$) クラスタリング問題に対するスケーラブルなアルゴリズムを提案する。
クラスタリングは、各$xin P$に対して$delta(x)$ of $x$の範囲内で中心となる場合、個別にフェアと呼ばれる。
我々は,従来よりもアルゴリズムがはるかに高速であるだけでなく,低コストのソリューションを生み出すことを実証的に示す。
論文 参考訳(メタデータ) (2024-02-09T19:01:48Z) - Do you know what q-means? [50.045011844765185]
クラスタリングは、大規模なデータセットを分析する上で最も重要なツールの1つである。
クラスタリングのための"$q$-means"アルゴリズムの改良版を提案する。
また、$Obig(frack2varepsilon2(sqrtkd + log(Nd))big で実行される $varepsilon に対する "dequantized" アルゴリズムも提示する。
論文 参考訳(メタデータ) (2023-08-18T17:52:12Z) - A Quantum Approximation Scheme for k-Means [0.16317061277457]
QRAMモデルにおける古典的な$k$-meansクラスタリング問題に対する量子近似スキームを提案する。
我々の量子アルゴリズムは、時間$tildeO left(2tildeO(frackvarepsilon) eta2 dright)$で実行される。
教師なし学習の以前の研究とは異なり、我々の量子アルゴリズムは量子線型代数のサブルーチンを必要としない。
論文 参考訳(メタデータ) (2023-08-16T06:46:37Z) - Efficient Learning of Quantum States Prepared With Few Non-Clifford Gates II: Single-Copy Measurements [0.43123403062068827]
最近の研究で、回路によって出力される$n$-qubitの量子状態が、最大$t$1-qubitの非クリフォードゲートを持つ場合、$mathsfpoly(n,2t,1/epsilon)$時間とサンプルを用いて、距離$epsilon$をトレースすることができることが示されている。
そこで本研究では,単一コピー計測のみを用いて,同じ状態のクラスを学習するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-08-14T14:32:42Z) - Efficiently Learning One-Hidden-Layer ReLU Networks via Schur
Polynomials [50.90125395570797]
正方形損失に関して、標準的なガウス分布の下での$k$ReLU活性化の線形結合をPAC学習する問題をmathbbRd$で検討する。
本研究の主な成果は,この学習課題に対して,サンプルおよび計算複雑性が$(dk/epsilon)O(k)$で,epsilon>0$が目標精度である。
論文 参考訳(メタデータ) (2023-07-24T14:37:22Z) - Improved Stabilizer Estimation via Bell Difference Sampling [0.43123403062068827]
安定化器の形式性に関して,様々なモデルにおける量子状態の学習の複雑さについて検討する。
Omega(n)$$T$gates は任意の Clifford+$T$ 回路で擬ランダム量子状態を作るのに必要であることを示す。
上記のアルゴリズムの修正は時間内に行われることを示す。
論文 参考訳(メタデータ) (2023-04-27T01:58:28Z) - Private estimation algorithms for stochastic block models and mixture
models [63.07482515700984]
効率的なプライベート推定アルゴリズムを設計するための一般的なツール。
最初の効率的な$(epsilon, delta)$-differentially private algorithm for both weak recovery and exact recovery。
論文 参考訳(メタデータ) (2023-01-11T09:12:28Z) - Mind the gap: Achieving a super-Grover quantum speedup by jumping to the
end [114.3957763744719]
本稿では,数種類のバイナリ最適化問題に対して,厳密な実行保証を有する量子アルゴリズムを提案する。
このアルゴリズムは、$n$非依存定数$c$に対して、時間で$O*(2(0.5-c)n)$の最適解を求める。
また、$k$-spinモデルからのランダムなインスタンスの多数と、完全に満足あるいはわずかにフラストレーションされた$k$-CSP式に対して、文 (a) がそうであることを示す。
論文 参考訳(メタデータ) (2022-12-03T02:45:23Z) - How to simulate quantum measurement without computing marginals [3.222802562733787]
量子状態$psi$を標準で計算するためのアルゴリズムを,古典的に記述し,解析する。
我々のアルゴリズムはサンプリングタスクを$n$-qubit状態のポリ(n)$振幅の計算に還元する。
論文 参考訳(メタデータ) (2021-12-15T21:44:05Z) - Fast estimation of outcome probabilities for quantum circuits [0.0]
我々は、$n$ qubits上の普遍量子回路のシミュレーションのための2つの古典的アルゴリズムを提案する。
我々のアルゴリズムは、パラメータの異なる条件下で最高の処理を行うことで、お互いを補完する。
アルゴリズムのC+Python実装を提供し、ランダム回路を用いてそれらをベンチマークする。
論文 参考訳(メタデータ) (2021-01-28T19:00:04Z) - Streaming Complexity of SVMs [110.63976030971106]
本稿では,ストリーミングモデルにおけるバイアス正規化SVM問題を解く際の空間複雑性について検討する。
両方の問題に対して、$frac1lambdaepsilon$の次元に対して、$frac1lambdaepsilon$よりも空間的に小さいストリーミングアルゴリズムを得ることができることを示す。
論文 参考訳(メタデータ) (2020-07-07T17:10:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。