Parameter estimation from an Ornstein-Uhlenbeck process with measurement noise
- URL: http://arxiv.org/abs/2305.13498v3
- Date: Wed, 10 Jul 2024 16:33:34 GMT
- Title: Parameter estimation from an Ornstein-Uhlenbeck process with measurement noise
- Authors: Simon Carter, Lilianne Mujica-Parodi, Helmut H. Strey,
- Abstract summary: We present an algorithm that can effectively separate thermal noise with comparable performance to Hamilton Monte Carlo.
We show that, with additional knowledge of the ratio between thermal and multiplicative noise, we can accurately distinguish between the two types of noise.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This article aims to investigate the impact of noise on parameter fitting for an Ornstein-Uhlenbeck process, focusing on the effects of multiplicative and thermal noise on the accuracy of signal separation. To address these issues, we propose algorithms and methods that can effectively distinguish between thermal and multiplicative noise and improve the precision of parameter estimation for optimal data analysis. Specifically, we explore the impact of both multiplicative and thermal noise on the obfuscation of the actual signal and propose methods to resolve them. First, we present an algorithm that can effectively separate thermal noise with comparable performance to Hamilton Monte Carlo (HMC) but with significantly improved speed. We then analyze multiplicative noise and demonstrate that HMC is insufficient for isolating thermal and multiplicative noise. However, we show that, with additional knowledge of the ratio between thermal and multiplicative noise, we can accurately distinguish between the two types of noise when provided with a sufficiently large sampling rate or an amplitude of multiplicative noise smaller than thermal noise. Thus, we demonstrate the mechanism underlying an otherwise counterintuitive phenomenon: when multiplicative noise dominates the noise spectrum, one can successfully estimate the parameters for such systems after adding additional white noise to shift the noise balance.
Related papers
- SDE-based Multiplicative Noise Removal [6.985808221697239]
Multiplicative noise affects images produced by synthetic aperture radar (SAR), lasers, or optical lenses.
We propose a novel approach using Differential Equations based diffusion models to address multiplicative noise.
arXiv Detail & Related papers (2024-08-19T00:31:05Z) - Bayesian Inference of General Noise Model Parameters from Surface Code's Syndrome Statistics [0.0]
We propose general noise model Bayesian inference methods that integrate the surface code's tensor network simulator.
For stationary noise, where the noise parameters are constant and do not change, we propose a method based on the Markov chain Monte Carlo.
For time-varying noise, which is a more realistic situation, we introduce another method based on the sequential Monte Carlo.
arXiv Detail & Related papers (2024-06-13T10:26:04Z) - General noise-resilient quantum amplitude estimation [0.0]
We present a novel algorithm that enhances the estimation of amplitude and observable under noise.
Remarkably, our algorithm exhibits robustness against noise that varies across different depths of the quantum circuits.
arXiv Detail & Related papers (2023-12-02T09:27:40Z) - Accurate and Honest Approximation of Correlated Qubit Noise [39.58317527488534]
We propose an efficient systematic construction of approximate noise channels, where their accuracy can be enhanced by incorporating noise components with higher qubit-qubit correlation degree.
We find that, for realistic noise strength typical for fixed-frequency superconducting qubits, correlated noise beyond two-qubit correlation can significantly affect the code simulation accuracy.
arXiv Detail & Related papers (2023-11-15T19:00:34Z) - Inference and Denoise: Causal Inference-based Neural Speech Enhancement [83.4641575757706]
This study addresses the speech enhancement (SE) task within the causal inference paradigm by modeling the noise presence as an intervention.
The proposed causal inference-based speech enhancement (CISE) separates clean and noisy frames in an intervened noisy speech using a noise detector and assigns both sets of frames to two mask-based enhancement modules (EMs) to perform noise-conditional SE.
arXiv Detail & Related papers (2022-11-02T15:03:50Z) - Characterizing low-frequency qubit noise [55.41644538483948]
Fluctuations of the qubit frequencies are one of the major problems to overcome on the way to scalable quantum computers.
The statistics of the fluctuations can be characterized by measuring the correlators of the outcomes of periodically repeated Ramsey measurements.
This work suggests a method that allows describing qubit dynamics during repeated measurements in the presence of evolving noise.
arXiv Detail & Related papers (2022-07-04T22:48:43Z) - SAR Despeckling using a Denoising Diffusion Probabilistic Model [52.25981472415249]
The presence of speckle degrades the image quality and adversely affects the performance of SAR image understanding applications.
We introduce SAR-DDPM, a denoising diffusion probabilistic model for SAR despeckling.
The proposed method achieves significant improvements in both quantitative and qualitative results over the state-of-the-art despeckling methods.
arXiv Detail & Related papers (2022-06-09T14:00:26Z) - High-Order Qubit Dephasing at Sweet Spots by Non-Gaussian Fluctuators:
Symmetry Breaking and Floquet Protection [55.41644538483948]
We study the qubit dephasing caused by the non-Gaussian fluctuators.
We predict a symmetry-breaking effect that is unique to the non-Gaussian noise.
arXiv Detail & Related papers (2022-06-06T18:02:38Z) - Learning based signal detection for MIMO systems with unknown noise
statistics [84.02122699723536]
This paper aims to devise a generalized maximum likelihood (ML) estimator to robustly detect signals with unknown noise statistics.
In practice, there is little or even no statistical knowledge on the system noise, which in many cases is non-Gaussian, impulsive and not analyzable.
Our framework is driven by an unsupervised learning approach, where only the noise samples are required.
arXiv Detail & Related papers (2021-01-21T04:48:15Z) - Modeling and mitigation of cross-talk effects in readout noise with
applications to the Quantum Approximate Optimization Algorithm [0.0]
Noise mitigation can be performed up to some error for which we derive upper bounds.
Experiments on 15 (23) qubits using IBM's devices to test both the noise model and the error-mitigation scheme.
We show that similar effects are expected for Haar-random quantum states and states generated by shallow-depth random circuits.
arXiv Detail & Related papers (2021-01-07T02:19:58Z) - Shape Matters: Understanding the Implicit Bias of the Noise Covariance [76.54300276636982]
Noise in gradient descent provides a crucial implicit regularization effect for training over parameterized models.
We show that parameter-dependent noise -- induced by mini-batches or label perturbation -- is far more effective than Gaussian noise.
Our analysis reveals that parameter-dependent noise introduces a bias towards local minima with smaller noise variance, whereas spherical Gaussian noise does not.
arXiv Detail & Related papers (2020-06-15T18:31:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.