論文の概要: A Trip Towards Fairness: Bias and De-Biasing in Large Language Models
- arxiv url: http://arxiv.org/abs/2305.13862v1
- Date: Tue, 23 May 2023 09:35:37 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-24 17:27:06.775056
- Title: A Trip Towards Fairness: Bias and De-Biasing in Large Language Models
- Title(参考訳): フェアネスに向けて:大規模言語モデルにおけるバイアスと非バイアス
- Authors: Leonardo Ranaldi, Elena Sofia Ruzzetti, Davide Venditti, Dario
Onorati, Fabio Massimo Zanzotto
- Abstract要約: トランスフォーマーベースのLanguage Modelsの人気が高まり、新しい機械学習アプリケーションへの扉が開かれた。
本稿では,様々なパラメータや事前学習データにおいて,有望な言語モデルが生み出すバイアスについて検討する。
本稿では,下流タスクの性能を維持する頑健なデバイアスモデルを生成するデバイアス手法を提案する。
- 参考スコア(独自算出の注目度): 0.20999222360659608
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: An outbreak in the popularity of transformer-based Language Models (such as
GPT (Brown et al., 2020) and PaLM (Chowdhery et al., 2022)) has opened the
doors to new Machine Learning applications. In particular, in Natural Language
Processing and how pre-training from large text, corpora is essential in
achieving remarkable results in downstream tasks. However, these Language
Models seem to have inherent biases toward certain demographics reflected in
their training data. While research has attempted to mitigate this problem,
existing methods either fail to remove bias altogether, degrade performance, or
are expensive. This paper examines the bias produced by promising Language
Models when varying parameters and pre-training data. Finally, we propose a
de-biasing technique that produces robust de-bias models that maintain
performance on downstream tasks.
- Abstract(参考訳): トランスフォーマーベースの言語モデル(GPT(Brown et al., 2020)やPaLM(Chowdhery et al., 2022)など)の人気が高まり、新しい機械学習アプリケーションへの扉が開かれた。
特に、自然言語処理や大規模テキストからの事前学習において、コーパスは下流タスクで顕著な結果を達成するのに不可欠である。
しかし、これらの言語モデルは、訓練データに反映される特定の人口層に対して固有の偏見を持っているようである。
研究はこの問題を緩和しようとしたが、既存の手法ではバイアスを完全に取り除いたり、性能を低下させたり、費用がかかる。
本稿では,様々なパラメータや事前学習データにおいて,有望な言語モデルが生み出すバイアスについて検討する。
最後に,下流タスクのパフォーマンスを維持するロバストなデバイアスモデルを生成するデバイアス手法を提案する。
関連論文リスト
- Distance between Relevant Information Pieces Causes Bias in Long-Context LLMs [50.40165119718928]
LongPiBenchは、複数の関連する情報を含む位置バイアスを評価するために設計されたベンチマークである。
これらの実験によると、現在のほとんどのモデルは「中間の失われた」問題に対して堅牢であるが、関連する情報片の間隔に関する重大なバイアスが存在する。
論文 参考訳(メタデータ) (2024-10-18T17:41:19Z) - A Multi-LLM Debiasing Framework [85.17156744155915]
大規模言語モデル(LLM)は、社会に多大な利益をもたらす可能性がある強力なツールであるが、社会的不平等を持続するバイアスを示す。
近年,マルチLLM手法への関心が高まっており,推論の質向上に有効であることが示されている。
LLMのバイアス低減を目的としたマルチLLMデバイアスフレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-20T20:24:50Z) - Unboxing Occupational Bias: Grounded Debiasing of LLMs with U.S. Labor Data [9.90951705988724]
大規模言語モデル(LLM)は、社会的バイアスを継承し増幅する傾向がある。
LLMバイアスは、不公平な慣行をもたらし、社会的不平等を悪化させる。
論文 参考訳(メタデータ) (2024-08-20T23:54:26Z) - Promoting Equality in Large Language Models: Identifying and Mitigating the Implicit Bias based on Bayesian Theory [29.201402717025335]
大規模言語モデル(LLM)は、必然的にバイアスのある情報を含む広範なテキストコーパスで訓練される。
我々は、暗黙のバイアス問題を正式に定義し、ベイズ理論に基づくバイアス除去のための革新的な枠組みを開発した。
論文 参考訳(メタデータ) (2024-08-20T07:40:12Z) - REFINE-LM: Mitigating Language Model Stereotypes via Reinforcement Learning [18.064064773660174]
本稿では、強化学習を用いて様々なバイアスを微調整せずに処理する脱バイアス法REFINE-LMを紹介する。
LMの単語確率分布の上に簡単なモデルをトレーニングすることにより、バイアス強化学習法により、人間のアノテーションを使わずにモデルの偏りを抑えることができる。
複数のLMを含む多種多様なモデルで行った実験により,本手法は,LMの性能を維持しながら,ステレオタイプバイアスを著しく低減することを示した。
論文 参考訳(メタデータ) (2024-08-18T14:08:31Z) - BiasDPO: Mitigating Bias in Language Models through Direct Preference Optimization [0.0]
大規模言語モデル(LLM)は、自然言語処理の進歩において重要な役割を担っているが、バイアスの持続可能性には重大な懸念がある。
本稿では、英語テキストにおけるジェンダー、人種、宗教的偏見を緩和するために、DPO(Direct Preference Optimization)を用いた新しい枠組みを提案する。
バイアスのある完了よりもバイアスの少ない損失関数を開発することで、我々のアプローチは敬意と非差別的な言語を好む。
論文 参考訳(メタデータ) (2024-07-18T22:32:20Z) - Pride and Prejudice: LLM Amplifies Self-Bias in Self-Refinement [75.7148545929689]
大規模言語モデル(LLM)は、特定のタスクの自己フィードバックを通じてパフォーマンスを向上し、他のタスクを劣化させる。
我々は、LSMの自己バイアス(自称世代を好む傾向)を正式に定義する。
我々は、翻訳、制約付きテキスト生成、数学的推論の6つのLCMを解析する。
論文 参考訳(メタデータ) (2024-02-18T03:10:39Z) - Self-Debiasing Large Language Models: Zero-Shot Recognition and
Reduction of Stereotypes [73.12947922129261]
ステレオタイピングを減らすために,大規模言語モデルのゼロショット機能を活用している。
自己嫌悪は、9つの異なる社会集団におけるステレオタイピングの度合いを著しく低下させることが示される。
この研究が、バイアス軽減のための他のゼロショット技術に関する調査をオープンにすることを願っている。
論文 参考訳(メタデータ) (2024-02-03T01:40:11Z) - GPTBIAS: A Comprehensive Framework for Evaluating Bias in Large Language
Models [83.30078426829627]
大規模言語モデル(LLM)は人気を集め、大規模なユーザコミュニティで広く採用されている。
既存の評価手法には多くの制約があり、それらの結果は限定的な解釈可能性を示している。
本稿では,LPMの高性能性を活用し,モデル内のバイアスを評価するGPTBIASというバイアス評価フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-11T12:02:14Z) - Exploring the Jungle of Bias: Political Bias Attribution in Language Models via Dependency Analysis [86.49858739347412]
大規模言語モデル(LLM)は、これらのモデルにおけるバイアスの頻度とその緩和に関する激しい議論を引き起こしている。
本稿では,意思決定プロセスに寄与する属性の抽出と仲介を行うためのプロンプトベースの手法を提案する。
観察された異なる治療は、少なくとも部分的には、属性の相違とモデルの相違によるものであることが判明した。
論文 参考訳(メタデータ) (2023-11-15T00:02:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。