論文の概要: Promoting Equality in Large Language Models: Identifying and Mitigating the Implicit Bias based on Bayesian Theory
- arxiv url: http://arxiv.org/abs/2408.10608v1
- Date: Tue, 20 Aug 2024 07:40:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-21 14:44:20.022629
- Title: Promoting Equality in Large Language Models: Identifying and Mitigating the Implicit Bias based on Bayesian Theory
- Title(参考訳): 大規模言語モデルにおける平等の促進:ベイズ理論に基づく暗黙のバイアスの同定と緩和
- Authors: Yongxin Deng, Xihe Qiu, Xiaoyu Tan, Jing Pan, Chen Jue, Zhijun Fang, Yinghui Xu, Wei Chu, Yuan Qi,
- Abstract要約: 大規模言語モデル(LLM)は、必然的にバイアスのある情報を含む広範なテキストコーパスで訓練される。
我々は、暗黙のバイアス問題を正式に定義し、ベイズ理論に基づくバイアス除去のための革新的な枠組みを開発した。
- 参考スコア(独自算出の注目度): 29.201402717025335
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) are trained on extensive text corpora, which inevitably include biased information. Although techniques such as Affective Alignment can mitigate some negative impacts of these biases, existing prompt-based attack methods can still extract these biases from the model's weights. Moreover, these biases frequently appear subtly when LLMs are prompted to perform identical tasks across different demographic groups, thereby camouflaging their presence. To address this issue, we have formally defined the implicit bias problem and developed an innovative framework for bias removal based on Bayesian theory, Bayesian-Theory based Bias Removal (BTBR). BTBR employs likelihood ratio screening to pinpoint data entries within publicly accessible biased datasets that represent biases inadvertently incorporated during the LLM training phase. It then automatically constructs relevant knowledge triples and expunges bias information from LLMs using model editing techniques. Through extensive experimentation, we have confirmed the presence of the implicit bias problem in LLMs and demonstrated the effectiveness of our BTBR approach.
- Abstract(参考訳): 大規模言語モデル(LLM)は、必然的にバイアスのある情報を含む広範なテキストコーパスで訓練される。
Affective Alignmentのようなテクニックはこれらのバイアスの負の影響を軽減することができるが、既存のプロンプトベースの攻撃方法はモデルの重みからこれらのバイアスを抽出することができる。
さらに、これらのバイアスは、LDMが異なる人口集団にまたがって同一のタスクを遂行するよう促されたときに、微妙に現れる。
この問題に対処するため、我々は、暗黙バイアス問題を正式に定義し、ベイズ理論に基づくバイアス除去のための革新的な枠組みである、ベイズ理論に基づくバイアス除去(BTBR)を開発した。
BTBRは、LLMトレーニングフェーズ中に意図せず組み込まれたバイアスを表す、一般にアクセス可能なバイアス付きデータセット内のデータエントリをピンポイントする可能性比率スクリーニングを採用している。
その後、関連する知識を3倍に自動的に構築し、モデル編集技術を用いてLLMからバイアス情報を抽出する。
広汎な実験により, LLMにおける暗黙バイアス問題の存在が確認され, BTBR法の有効性を実証した。
関連論文リスト
- Explicit vs. Implicit: Investigating Social Bias in Large Language Models through Self-Reflection [5.800102484016876]
大規模言語モデル(LLM)は、生成されたコンテンツに様々なバイアスとステレオタイプを示すことが示されている。
本稿では, LLMにおける明示的, 暗黙的な偏見を解明するために, 社会心理学理論に基づく体系的枠組みを提案する。
論文 参考訳(メタデータ) (2025-01-04T14:08:52Z) - Towards Resource Efficient and Interpretable Bias Mitigation in Large Language Models [1.787433808079955]
大規模言語モデル (LLM) は、学習データにおいて望ましくないバイアスを持続させる。
本稿では,小さなバイアスとアンチバイアスのエキスパートモデルを利用してバイアスを緩和し,デバイアス信号を得る。
性別、人種、宗教の偏見を緩和する実験は、いくつかの地域および世界的な偏見指標に偏見を減少させる。
論文 参考訳(メタデータ) (2024-12-02T16:56:08Z) - How far can bias go? -- Tracing bias from pretraining data to alignment [54.51310112013655]
本研究では, 事前学習データにおける性別占有バイアスと, LLMにおける性別占有バイアスの相関について検討した。
その結果,事前学習データに存在するバイアスがモデル出力に増幅されることが判明した。
論文 参考訳(メタデータ) (2024-11-28T16:20:25Z) - Unboxing Occupational Bias: Grounded Debiasing of LLMs with U.S. Labor Data [9.90951705988724]
大規模言語モデル(LLM)は、社会的バイアスを継承し増幅する傾向がある。
LLMバイアスは、不公平な慣行をもたらし、社会的不平等を悪化させる。
論文 参考訳(メタデータ) (2024-08-20T23:54:26Z) - Editable Fairness: Fine-Grained Bias Mitigation in Language Models [52.66450426729818]
個々人の社会的偏見をきめ細かなキャリブレーションを可能にする新しいデバイアス・アプローチであるFairness Stamp(FAST)を提案する。
FASTは最先端のベースラインを超え、デバイアス性能が優れている。
これは、大きな言語モデルにおける公平性を達成するためのきめ細かいデバイアス戦略の可能性を強調している。
論文 参考訳(メタデータ) (2024-08-07T17:14:58Z) - The African Woman is Rhythmic and Soulful: An Investigation of Implicit Biases in LLM Open-ended Text Generation [3.9945212716333063]
大規模言語モデル(LLM)による決定に影響を与えるため、暗黙のバイアスは重要である。
伝統的に、明示的なバイアステストや埋め込みベースの手法はバイアスを検出するために使用されるが、これらのアプローチはより微妙で暗黙的なバイアスの形式を見落としることができる。
提案手法は, 暗黙の偏見を明らかにするために, 即発的, 意思決定的タスクによる2つの新しい心理学的手法を導入している。
論文 参考訳(メタデータ) (2024-07-01T13:21:33Z) - Investigating Bias in LLM-Based Bias Detection: Disparities between LLMs and Human Perception [13.592532358127293]
大規模言語モデル(LLM)におけるバイアスの存在と性質について検討する。
LLMが特に政治的バイアス予測やテキスト継続タスクにおいてバイアスを示すかどうかを調査する。
我々は,素早い工学とモデル微調整を含む脱バイアス戦略を提案する。
論文 参考訳(メタデータ) (2024-03-22T00:59:48Z) - Take Care of Your Prompt Bias! Investigating and Mitigating Prompt Bias in Factual Knowledge Extraction [56.17020601803071]
近年の研究では、事前学習言語モデル(PLM)が、事実知識抽出において「急激なバイアス」に悩まされていることが示されている。
本稿では,突発バイアスを徹底的に調査し緩和することにより,既存のベンチマークの信頼性を向上させることを目的とする。
論文 参考訳(メタデータ) (2024-03-15T02:04:35Z) - Self-Debiasing Large Language Models: Zero-Shot Recognition and
Reduction of Stereotypes [73.12947922129261]
ステレオタイピングを減らすために,大規模言語モデルのゼロショット機能を活用している。
自己嫌悪は、9つの異なる社会集団におけるステレオタイピングの度合いを著しく低下させることが示される。
この研究が、バイアス軽減のための他のゼロショット技術に関する調査をオープンにすることを願っている。
論文 参考訳(メタデータ) (2024-02-03T01:40:11Z) - GPTBIAS: A Comprehensive Framework for Evaluating Bias in Large Language
Models [83.30078426829627]
大規模言語モデル(LLM)は人気を集め、大規模なユーザコミュニティで広く採用されている。
既存の評価手法には多くの制約があり、それらの結果は限定的な解釈可能性を示している。
本稿では,LPMの高性能性を活用し,モデル内のバイアスを評価するGPTBIASというバイアス評価フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-11T12:02:14Z) - Exploring the Jungle of Bias: Political Bias Attribution in Language Models via Dependency Analysis [86.49858739347412]
大規模言語モデル(LLM)は、これらのモデルにおけるバイアスの頻度とその緩和に関する激しい議論を引き起こしている。
本稿では,意思決定プロセスに寄与する属性の抽出と仲介を行うためのプロンプトベースの手法を提案する。
観察された異なる治療は、少なくとも部分的には、属性の相違とモデルの相違によるものであることが判明した。
論文 参考訳(メタデータ) (2023-11-15T00:02:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。