論文の概要: Acquiring Frame Element Knowledge with Deep Metric Learning for Semantic
Frame Induction
- arxiv url: http://arxiv.org/abs/2305.13944v1
- Date: Tue, 23 May 2023 11:02:28 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-24 16:59:59.035280
- Title: Acquiring Frame Element Knowledge with Deep Metric Learning for Semantic
Frame Induction
- Title(参考訳): 意味的フレーム誘導のためのDeep Metric Learningを用いたフレーム要素知識の獲得
- Authors: Kosuke Yamada, Ryohei Sasano, Koichi Takeda
- Abstract要約: 本稿では,ディープラーニングを意味的フレーム帰納タスクに適用する手法を提案する。
事前訓練された言語モデルは、フレーム要素の役割を区別するのに適するように微調整される。
FrameNetの実験結果から,本手法は既存手法よりも大幅に性能が向上することが示された。
- 参考スコア(独自算出の注目度): 24.486546938073907
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The semantic frame induction tasks are defined as a clustering of words into
the frames that they evoke, and a clustering of their arguments according to
the frame element roles that they should fill. In this paper, we address the
latter task of argument clustering, which aims to acquire frame element
knowledge, and propose a method that applies deep metric learning. In this
method, a pre-trained language model is fine-tuned to be suitable for
distinguishing frame element roles through the use of frame-annotated data, and
argument clustering is performed with embeddings obtained from the fine-tuned
model. Experimental results on FrameNet demonstrate that our method achieves
substantially better performance than existing methods.
- Abstract(参考訳): 意味的フレーム誘導タスクは、それらが引き起こすフレームへの単語のクラスタリングと、それらが満たすべきフレーム要素ロールに従って引数のクラスタリングとして定義される。
本稿では,フレーム要素知識獲得を目的とした議論クラスタリングの課題である後者の課題に対処し,深層メトリック学習を適用する手法を提案する。
この方法では、フレームアノテートデータを用いてフレーム要素の役割を区別するのに適した訓練済み言語モデルを微調整し、微調整されたモデルから得られた埋め込みを用いて引数クラスタリングを行う。
FrameNetの実験結果から,本手法は既存手法よりも大幅に性能が向上することが示された。
関連論文リスト
- Taming CLIP for Fine-grained and Structured Visual Understanding of Museum Exhibits [59.66134971408414]
博物館展示の微細で構造化された理解にCLIPを適用することを目的としている。
私たちのデータセットは、パブリックドメインで最初のものです。
提案手法(MUZE)は,変換器を用いた解析ネットワーク(parseNet)を用いて,CLIPのイメージ埋め込みを表構造にマッピングする方法を学習する。
論文 参考訳(メタデータ) (2024-09-03T08:13:06Z) - Visual Prompt Selection for In-Context Learning Segmentation [77.15684360470152]
本稿では,サンプル選択戦略の再考と改善に焦点をあてる。
まず、ICLに基づくセグメンテーションモデルが異なる文脈に敏感であることを示す。
さらに、経験的証拠は、文脈的プロンプトの多様性がセグメンテーションを導く上で重要な役割を担っていることを示している。
論文 参考訳(メタデータ) (2024-07-14T15:02:54Z) - RAR: Retrieving And Ranking Augmented MLLMs for Visual Recognition [78.97487780589574]
MLLM(Multimodal Large Language Models)は、細粒度カテゴリの分類において優れている。
本稿では,MLLMの検索とランク付けのための拡張手法を提案する。
提案手法は, 微粒化認識における固有の限界に対処するだけでなく, モデルの包括的知識基盤も維持する。
論文 参考訳(メタデータ) (2024-03-20T17:59:55Z) - Learning Referring Video Object Segmentation from Weak Annotation [78.45828085350936]
RVOS(Referring Video Object segmentation)は、対象物を記述する文に基づいて、対象物をすべてのビデオフレームにセグメント化することを目的としたタスクである。
そこで本研究では, RVOS に対する十分な監視を提供しながら, アノテーションの労力を 8 倍に削減する新たなアノテーション方式を提案する。
私たちのスキームは、最初にオブジェクトが現れるフレームのマスクと、残りのフレームのバウンディングボックスのみを必要とする。
論文 参考訳(メタデータ) (2023-08-04T06:50:52Z) - Semantic Frame Induction with Deep Metric Learning [24.486546938073907]
本研究では,深層学習を用いて文脈的埋め込みモデルを微調整するモデルを提案する。
セマンティック・フレーム・インダクションを実行するために、微調整されたコンテキスト適応型埋め込みを適用した。
論文 参考訳(メタデータ) (2023-04-27T15:46:09Z) - Knowledge-augmented Frame Semantic Parsing with Hybrid Prompt-tuning [17.6573121083417]
本稿では,意味表現を強化するための知識強化フレーム意味解析アーキテクチャ(KAF-SPA)を提案する。
メモリベースの知識抽出モジュール(MKEM)は、正確なフレーム知識を選択し、連続的なテンプレートを構築するために考案された。
我々はまた、選択した知識をPLMに組み込むハイブリッドプロンプトを用いてタスク指向知識探索モジュール(TKPM)を設計し、フレームおよび引数識別のタスクにPLMを適用する。
論文 参考訳(メタデータ) (2023-03-25T06:41:19Z) - Query Your Model with Definitions in FrameNet: An Effective Method for
Frame Semantic Role Labeling [43.58108941071302]
Frame Semantic Role Labeling (FSRL)は、引数を特定し、FrameNetで定義されたフレームロールにラベル付けする。
本稿では,これらの問題を緩和するために,FrameNet (AGED) で定義した ArGument Extractor というクエリベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2022-12-05T05:09:12Z) - Prompt-Matched Semantic Segmentation [96.99924127527002]
本研究の目的は、事前学習した基礎モデルを、画像意味セグメンテーションの下流の様々なタスクに効果的に適応する方法を検討することである。
本稿では,タスク指向のチューニングに適応的に視覚的プロンプトを生成するとともに,基礎モデルの本来の構造を維持できる新しい階層間プロンプトマッチングフレームワークを提案する。
次に、Semantic-aware Prompt Matcherと呼ばれる軽量モジュールを導入し、2つのステージ間で階層的に補間し、各タスクに対して適切なプロンプトを学習する。
論文 参考訳(メタデータ) (2022-08-22T09:12:53Z) - Transferring Semantic Knowledge Into Language Encoders [6.85316573653194]
意味的意味表現から言語エンコーダへ意味的知識を伝達する手法である意味型ミッドチューニングを導入する。
このアライメントは分類や三重項の損失によって暗黙的に学習できることを示す。
提案手法は, 推論, 理解, テキストの類似性, その他の意味的タスクにおいて, 予測性能の向上を示す言語エンコーダを生成する。
論文 参考訳(メタデータ) (2021-10-14T14:11:12Z) - Semantic Frame Induction using Masked Word Embeddings and Two-Step
Clustering [9.93359829907774]
マスク付き単語埋め込みと2段階クラスタリングを用いた意味的フレーム誘導手法を提案する。
マスク付き単語埋め込みは,フレーム呼出動詞の表面情報への依存度を過度に回避するために有効であることを示す。
論文 参考訳(メタデータ) (2021-05-27T22:00:33Z) - How Fine-Tuning Allows for Effective Meta-Learning [50.17896588738377]
MAMLライクなアルゴリズムから派生した表現を解析するための理論的フレームワークを提案する。
我々は,勾配降下による微調整により得られる最良予測器のリスク境界を提示し,アルゴリズムが共有構造を有効活用できることを実証する。
この分離の結果、マイニングベースのメソッド、例えばmamlは、少数ショット学習における"frozen representation"目標を持つメソッドよりも優れている。
論文 参考訳(メタデータ) (2021-05-05T17:56:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。