Learning Subpocket Prototypes for Generalizable Structure-based Drug
Design
- URL: http://arxiv.org/abs/2305.13997v1
- Date: Mon, 22 May 2023 13:49:49 GMT
- Title: Learning Subpocket Prototypes for Generalizable Structure-based Drug
Design
- Authors: Zaixi Zhang, Qi Liu
- Abstract summary: Deep generative models have achieved remarkable success in generating 3D molecules conditioned on the protein pocket.
Most existing methods consider molecular generation for protein pockets independently.
We propose a novel method DrugGPS for generalizable structure-based drug design.
- Score: 17.61987808099346
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Generating molecules with high binding affinities to target proteins (a.k.a.
structure-based drug design) is a fundamental and challenging task in drug
discovery. Recently, deep generative models have achieved remarkable success in
generating 3D molecules conditioned on the protein pocket. However, most
existing methods consider molecular generation for protein pockets
independently while neglecting the underlying connections such as
subpocket-level similarities. Subpockets are the local protein environments of
ligand fragments and pockets with similar subpockets may bind the same
molecular fragment (motif) even though their overall structures are different.
Therefore, the trained models can hardly generalize to unseen protein pockets
in real-world applications. In this paper, we propose a novel method DrugGPS
for generalizable structure-based drug design. With the biochemical priors, we
propose to learn subpocket prototypes and construct a global interaction graph
to model the interactions between subpocket prototypes and molecular motifs.
Moreover, a hierarchical graph transformer encoder and motif-based 3D molecule
generation scheme are used to improve the model's performance. The experimental
results show that our model consistently outperforms baselines in generating
realistic drug candidates with high affinities in challenging
out-of-distribution settings.
Related papers
- PILOT: Equivariant diffusion for pocket conditioned de novo ligand generation with multi-objective guidance via importance sampling [8.619610909783441]
We propose an in-silico approach for the $textitde novo$ generation of 3D ligand structures using the equivariant diffusion model PILOT.
Its multi-objective-based importance sampling strategy is designed to direct the model towards molecules that exhibit desired characteristics.
We employ PILOT to generate novel metrics for unseen protein pockets from the Kinodata-3D dataset.
arXiv Detail & Related papers (2024-05-23T17:58:28Z) - DecompDiff: Diffusion Models with Decomposed Priors for Structure-Based Drug Design [62.68420322996345]
Existing structured-based drug design methods treat all ligand atoms equally.
We propose a new diffusion model, DecompDiff, with decomposed priors over arms and scaffold.
Our approach achieves state-of-the-art performance in generating high-affinity molecules.
arXiv Detail & Related papers (2024-02-26T05:21:21Z) - Functional-Group-Based Diffusion for Pocket-Specific Molecule Generation and Elaboration [63.23362798102195]
We propose D3FG, a functional-group-based diffusion model for pocket-specific molecule generation and elaboration.
D3FG decomposes molecules into two categories of components: functional groups defined as rigid bodies and linkers as mass points.
In the experiments, our method can generate molecules with more realistic 3D structures, competitive affinities toward the protein targets, and better drug properties.
arXiv Detail & Related papers (2023-05-30T06:41:20Z) - Generation of 3D Molecules in Pockets via Language Model [0.0]
Generative models for molecules based on sequential line notation (e.g. SMILES) or graph representation have attracted an increasing interest in the field of structure-based drug design.
We introduce Lingo3DMol, a pocket-based 3D molecule generation method that combines language models and geometric deep learning technology.
arXiv Detail & Related papers (2023-05-17T11:31:06Z) - Target Specific De Novo Design of Drug Candidate Molecules with Graph Transformer-based Generative Adversarial Networks [0.0]
We propose an end-to-end generative system, DrugGEN, for the de novo design of drug candidate molecules.
The system is trained using a large dataset of drug-like compounds and target-specific bioactive molecules.
Using the open-access DrugGEN, it is possible to easily train models for other druggable proteins.
arXiv Detail & Related papers (2023-02-15T18:59:27Z) - DiffBP: Generative Diffusion of 3D Molecules for Target Protein Binding [51.970607704953096]
Previous works usually generate atoms in an auto-regressive way, where element types and 3D coordinates of atoms are generated one by one.
In real-world molecular systems, the interactions among atoms in an entire molecule are global, leading to the energy function pair-coupled among atoms.
In this work, a generative diffusion model for molecular 3D structures based on target proteins is established, at a full-atom level in a non-autoregressive way.
arXiv Detail & Related papers (2022-11-21T07:02:15Z) - Equivariant 3D-Conditional Diffusion Models for Molecular Linker Design [82.23006955069229]
We propose DiffLinker, an E(3)-equivariant 3D-conditional diffusion model for molecular linker design.
Our model places missing atoms in between and designs a molecule incorporating all the initial fragments.
We demonstrate that DiffLinker outperforms other methods on the standard datasets generating more diverse and synthetically-accessible molecules.
arXiv Detail & Related papers (2022-10-11T09:13:37Z) - Tailoring Molecules for Protein Pockets: a Transformer-based Generative
Solution for Structured-based Drug Design [133.1268990638971]
De novo drug design based on the structure of a target protein can provide novel drug candidates.
We present a generative solution named TamGent that can directly generate candidate drugs from scratch for a given target.
arXiv Detail & Related papers (2022-08-30T09:32:39Z) - Retrieval-based Controllable Molecule Generation [63.44583084888342]
We propose a new retrieval-based framework for controllable molecule generation.
We use a small set of molecules to steer the pre-trained generative model towards synthesizing molecules that satisfy the given design criteria.
Our approach is agnostic to the choice of generative models and requires no task-specific fine-tuning.
arXiv Detail & Related papers (2022-08-23T17:01:16Z) - Widely Used and Fast De Novo Drug Design by a Protein Sequence-Based
Reinforcement Learning Model [4.815696666006742]
Structure-based de novo method can overcome the data scarcity of active by incorporating drug-target interaction into deep generative architectures.
Here, we demonstrate a widely used and fast protein sequence-based reinforcement learning model for drug discovery.
As a proof of concept, the RL model was utilized to design molecules for four targets.
arXiv Detail & Related papers (2022-08-14T10:41:52Z) - In-Pocket 3D Graphs Enhance Ligand-Target Compatibility in Generative
Small-Molecule Creation [0.0]
We present a graph-based generative modeling technology that encodes explicit 3D protein-ligand contacts within a relational graph architecture.
The models combine a conditional variational autoencoder that allows for activity-specific molecule generation with putative contact generation that provides predictions of molecular interactions within the target binding pocket.
arXiv Detail & Related papers (2022-04-05T22:53:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.