論文の概要: Unique Steady-State Squeezing in a Driven Quantum Rabi Model
- arxiv url: http://arxiv.org/abs/2305.14290v2
- Date: Fri, 5 Jan 2024 12:03:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-08 18:51:14.042351
- Title: Unique Steady-State Squeezing in a Driven Quantum Rabi Model
- Title(参考訳): 駆動型量子ラビモデルにおける特異定常スクイーズ
- Authors: Karol Gietka, Christoph Hotter, and Helmut Ritsch
- Abstract要約: スクイージングは多くの量子技術や量子物理学の理解に不可欠である。
ここでは、クローズドかつオープンな量子ラビとディックモデルで生成される定常スクイーズの理論を開発する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Squeezing is essential to many quantum technologies and our understanding of
quantum physics. Here we develop a theory of steady-state squeezing that can be
generated in the closed and open quantum Rabi as well as Dicke model. To this
end, we eliminate the spin dynamics which effectively leads to an abstract
harmonic oscillator whose eigenstates are squeezed with respect to the physical
harmonic oscillator. The generated form of squeezing has the unique property of
time-independent uncertainties and squeezed dynamics, a novel type of quantum
behavior. Such squeezing might find applications in continuous back-action
evading measurements and should already be observable in optomechanical systems
and Coulomb crystals.
- Abstract(参考訳): スクイージングは多くの量子技術と量子物理学の理解に不可欠である。
ここでは、閉および開量子ラビおよびディッケモデルで生成可能な定常スクイージングの理論を展開する。
これにより、物理的調和振動子に対して固有状態が絞られた抽象調和振動子を効果的に導くスピンダイナミクスを解消する。
生成されたスクイージングの形式は、時間に依存しない不確かさと、新しいタイプの量子行動であるスクイージングダイナミクスのユニークな性質を持つ。
このようなスクイーズ法は、連続したバックアクション回避測定に適用できる可能性があり、オプティメカル系やクーロン結晶で既に観測可能である。
関連論文リスト
- Entanglement with neutral atoms in the simulation of nonequilibrium dynamics of one-dimensional spin models [0.0]
スピン-1/2モデルの力学における絡み合いの生成と役割について検討する。
我々は,スピン-エチョ配列でインターリーブされた急激な断熱的Rydbergドレッシングを含む中性原子モルマー-ソレンセンゲートを導入する。
量子シミュレーションでは、逆場イジングモデルのクエンチ力学における臨界挙動を考察する。
論文 参考訳(メタデータ) (2024-06-07T23:29:16Z) - Hysteresis and Self-Oscillations in an Artificial Memristive Quantum Neuron [79.16635054977068]
本研究では, 量子メムリスタを含む人工ニューロン回路について, 緩和と脱落の存在下で検討した。
この物理原理は、量子デバイスの電流電圧特性のヒステリシス的挙動を可能にすることを実証する。
論文 参考訳(メタデータ) (2024-05-01T16:47:23Z) - Hilbert-Space Ergodicity in Driven Quantum Systems: Obstructions and
Designs [0.0]
時間依存ハミルトニアンを持つ閉系に対する量子エルゴード性の概念を研究する。
統計的擬似ランダム性は、単一周波数で駆動される量子システムによって既に達成可能であることを示す。
論文 参考訳(メタデータ) (2024-02-09T19:00:00Z) - Quantum squeezing in a nonlinear mechanical oscillator [2.203084162322062]
機械的自由度は、連続可変量子情報処理の自然な候補である。
超伝導量子ビットに結合したギガヘルツ周波数機械共振器の基底状態スクイーズを実演する。
論文 参考訳(メタデータ) (2023-12-26T18:57:01Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
臨界近傍の量子系の低エネルギー力学が有限絡みによってどのように変化するかを研究する。
その結果、時間依存的臨界現象における絡み合いによる正確な役割が確立された。
論文 参考訳(メタデータ) (2023-01-23T19:23:54Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
本研究では,Landau-Zenerモデルにおける過渡ダイナミクスを,Landau-Zener速度の関数として検討する。
我々の実験は、工学的なボソニックモードスペクトルに結合した量子ビットを用いたより複雑なシミュレーションの道を開いた。
論文 参考訳(メタデータ) (2022-11-26T15:04:11Z) - Quantum simulation of antiferromagnetic Heisenberg chain with
gate-defined quantum dots [0.0]
磁気相はフェルミ・ハッバード模型のモット絶縁体系に自然に生じる。
線形量子ドットアレイを用いたモット絶縁体系における磁性の量子シミュレーションを示す。
論文 参考訳(メタデータ) (2021-03-15T09:45:02Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
非エルミート強結合格子モデルが、非条件、量子力学的に一貫した方法でどのように実現できるかを示す。
我々は、フェルミオン系とボゾン系の両方に対するそのようなモデルの量子定常状態に焦点を当てる。
論文 参考訳(メタデータ) (2021-03-02T18:56:44Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
論文は、非平衡状態における強相関量子系の量子力学に関するものである。
本研究の主な成果は, 臨界ダイナミクスのシグナチャ, 超ストロング結合のテストベッドとしての駆動ディックモデル, キブルズルーク機構の3つにまとめることができる。
論文 参考訳(メタデータ) (2020-07-23T19:05:56Z) - Probing the Universality of Topological Defect Formation in a Quantum
Annealer: Kibble-Zurek Mechanism and Beyond [46.39654665163597]
一次元横フィールドイジングモデルによるトポロジカル欠陥生成の実験的検討について報告する。
位相フリップ誤差を伴う開系量子力学のKZMにより量子シミュレータの結果を実際に説明できることが判明した。
これは、環境からの孤立を仮定する一般化KZM理論の理論的予測が、その元のスコープを越えてオープンシステムに適用されることを意味する。
論文 参考訳(メタデータ) (2020-01-31T02:55:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。