論文の概要: Benchmarking the human brain against computational architectures
- arxiv url: http://arxiv.org/abs/2305.14363v1
- Date: Mon, 15 May 2023 08:00:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-28 04:49:46.551805
- Title: Benchmarking the human brain against computational architectures
- Title(参考訳): 計算アーキテクチャに対する人間の脳のベンチマーク
- Authors: C\'eline van Valkenhoef, Catherine Schuman, Philip Walther
- Abstract要約: 本稿では,認知能力のベンチマークのための新しい方法論フレームワークについて報告する。
我々は,人間の被験者による実験における計算効率を決定する。
視野の大きさが制限され,ノイズが付加されたニューロモルフィックアーキテクチャが,我々の結果に良い近似を与えることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The human brain has inspired novel concepts complementary to classical and
quantum computing architectures, such as artificial neural networks and
neuromorphic computers, but it is not clear how their performances compare.
Here we report a new methodological framework for benchmarking cognitive
performance based on solving computational problems with increasing problem
size. We determine computational efficiencies in experiments with human
participants and benchmark these against complexity classes. We show that a
neuromorphic architecture with limited field-of-view size and added noise
provides a good approximation to our results. The benchmarking also suggests
there is no quantum advantage on the scales of human capability compared to the
neuromorphic model. Thus, the framework offers unique insights into the
computational efficiency of the brain by considering it a black box.
- Abstract(参考訳): 人間の脳は、人工ニューラルネットワークやニューロモルフィックコンピュータのような古典的および量子コンピューティングアーキテクチャを補完する新しい概念にインスピレーションを与えたが、その性能がどのように比較されるかは明らかになっていない。
本稿では,問題の大きさを増加させ計算問題を解くことに基づく認知的パフォーマンスのベンチマーク手法を提案する。
我々は,人間の実験における計算効率を判定し,それらを複雑性クラスと比較する。
視野の大きさが制限され,ノイズが付加されたニューロモルフィックアーキテクチャが,我々の結果に良い近似を与えることを示す。
ベンチマークはまた、ニューロモルフィックモデルと比較して人間の能力のスケールに量子的優位性はないことを示唆している。
したがって、このフレームワークはブラックボックスとして考えることで、脳の計算効率に関するユニークな洞察を提供する。
関連論文リスト
- Brain-inspired Computational Modeling of Action Recognition with Recurrent Spiking Neural Networks Equipped with Reinforcement Delay Learning [4.9798155883849935]
行動認識は、その複雑な性質と、この分野における脳の異常なパフォーマンスのために大きな注目を集めている。
現在の行動認識のソリューションは、問題を効果的に解決する際の限界を示すか、必要な生物学的妥当性を欠くかのどちらかである。
本稿では,脳に触発された行動認識モデルを提案する。
論文 参考訳(メタデータ) (2024-06-17T17:34:16Z) - A Review of Neuroscience-Inspired Machine Learning [58.72729525961739]
バイオプルーシブル・クレジット・アサインメントは、事実上あらゆる学習条件と互換性があり、エネルギー効率が高い。
本稿では,人工ニューラルネットワークにおける信用代入の生体評価可能なルールをモデル化する,いくつかの重要なアルゴリズムについて検討する。
我々は,このようなアルゴリズムを実用アプリケーションでより有用にするためには,今後の課題に対処する必要があることを論じる。
論文 参考訳(メタデータ) (2024-02-16T18:05:09Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
大規模なニューラル生成モデルは、意味的に豊富なテキストのパスを合成したり、複雑な画像を生成することができる。
我々はコモン・モデル・オブ・コグニティブ・ニューラル・ジェネレーティブ・システムについて論じる。
論文 参考訳(メタデータ) (2023-10-14T23:28:48Z) - NeuroBench: A Framework for Benchmarking Neuromorphic Computing Algorithms and Systems [50.101188703826686]
ニューロベンチ(NeuroBench)はニューロモルフィックコンピューティングアルゴリズムとシステムのためのベンチマークフレームワークである。
NeuroBenchは、業界や学界にまたがる研究者のオープンなコミュニティによる共同開発である。
論文 参考訳(メタデータ) (2023-04-10T15:12:09Z) - Explainable fMRI-based Brain Decoding via Spatial Temporal-pyramid Graph
Convolutional Network [0.8399688944263843]
既存のfMRIベースの脳デコードのための機械学習手法は、分類性能が低いか、説明性が悪いかのいずれかに悩まされている。
本稿では,機能的脳活動の時空間グラフ表現を捉えるために,生物学的にインスパイアされたアーキテクチャである時空間ピラミドグラフ畳み込みネットワーク(STpGCN)を提案する。
我々は,Human Connectome Project (HCP) S1200から23の認知タスク下でのfMRIデータに関する広範な実験を行った。
論文 参考訳(メタデータ) (2022-10-08T12:14:33Z) - Neuromorphic Artificial Intelligence Systems [58.1806704582023]
フォン・ノイマンアーキテクチャと古典的ニューラルネットワークに基づく現代のAIシステムは、脳と比較して多くの基本的な制限がある。
この記事では、そのような制限と、それらが緩和される方法について論じる。
これは、これらの制限が克服されている現在利用可能なニューロモーフィックAIプロジェクトの概要を示す。
論文 参考訳(メタデータ) (2022-05-25T20:16:05Z) - Mapping and Validating a Point Neuron Model on Intel's Neuromorphic
Hardware Loihi [77.34726150561087]
インテルの第5世代ニューロモルフィックチップ「Loihi」の可能性について検討する。
Loihiは、脳内のニューロンをエミュレートするスパイキングニューラルネットワーク(SNN)という新しいアイデアに基づいている。
Loihiは従来のシミュレーションを非常に効率的に再現し、ネットワークが大きくなるにつれて、時間とエネルギーの両方のパフォーマンスにおいて顕著にスケールする。
論文 参考訳(メタデータ) (2021-09-22T16:52:51Z) - On the Self-Repair Role of Astrocytes in STDP Enabled Unsupervised SNNs [1.0009912692042526]
この研究は、ニューロンとシナプスの計算モデルに対する現在のニューロモルフィックコンピューティングアーキテクチャの焦点を越えている。
スパイクタイミング依存塑性(STDP)を用いた教師なし学習によるスパイクニューラルネットワークの耐故障能におけるグリア細胞の役割について検討する。
MNISTデータセットとFashion-MNISTデータセットで提案した提案を,50%から90%までのさまざまな障害度を持つネットワークで実現可能な自己修復の程度を特徴付ける。
論文 参考訳(メタデータ) (2020-09-08T01:14:53Z) - Neuromorphic Computing for Content-based Image Retrieval [0.0]
画像検索のコンピュータビジョンタスクにおいて,Intelが開発したニューロモルフィックコンピューティングチップであるLoihiの応用について検討する。
この結果は,ARM Cortex-A72 CPUと比較してニューロモルフィックソリューションのエネルギー効率は2.5倍,軽量畳み込みニューラルネットワークの12.5倍であった。
論文 参考訳(メタデータ) (2020-08-04T07:34:07Z) - Spiking Neural Networks Hardware Implementations and Challenges: a
Survey [53.429871539789445]
スパイキングニューラルネットワークは、ニューロンとシナプスの操作原理を模倣する認知アルゴリズムである。
スパイキングニューラルネットワークのハードウェア実装の現状について述べる。
本稿では,これらのイベント駆動アルゴリズムの特性をハードウェアレベルで活用するための戦略について論じる。
論文 参考訳(メタデータ) (2020-05-04T13:24:00Z) - On the computational power and complexity of Spiking Neural Networks [0.0]
本研究では, スパイクニューラルネットワークを機械モデルとして導入し, 親しみやすいチューリングマシンとは対照的に, 情報と操作を機械内に共同配置する。
正規問題を導入し、複雑性クラスの階層を定義し、いくつかの最初の完全性結果を提供する。
論文 参考訳(メタデータ) (2020-01-23T10:40:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。